設(shè)a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(Ⅰ)令Fx)=xfx),討論Fx)在(0.+)內(nèi)的單調(diào)性并求極值;

(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.

內(nèi)是減函數(shù),在內(nèi)是增函數(shù),所以,在處取得極小值


解析:

(Ⅰ)解:根據(jù)求導(dǎo)法則有

,

于是,

列表如下:

2

0

極小值

故知內(nèi)是減函數(shù),在內(nèi)是增函數(shù),所以,在處取得極小值

(Ⅱ)證明:由知,的極小值

于是由上表知,對(duì)一切,恒有

從而當(dāng)時(shí),恒有,故內(nèi)單調(diào)增加.

所以當(dāng)時(shí),,即

故當(dāng)時(shí),恒有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年安徽卷理)(本小題滿分14分)

設(shè)a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(Ⅰ)令Fx)=xf'x),討論Fx)在(0.+∞)內(nèi)的單調(diào)性并求極值;

(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年舞陽(yáng)一高四模理)(12分) 設(shè)a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(Ⅰ)令F(x)=xf'(x),討論Fx)在(0.+∞)內(nèi)的單調(diào)性并求極值;

(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省普寧市09-10學(xué)年高二下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

設(shè)a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(1)令Fx)=xf'x),討論Fx)在(0.+∞)內(nèi)的單調(diào)性并求極值;

(2)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(安徽) 題型:解答題

(本小題滿分14分)

設(shè)a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(Ⅰ)令Fx)=xf'x),討論Fx)在(0.+∞)內(nèi)的單調(diào)性并求極值;

(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案