已知等軸雙曲線的頂點在x軸上,兩頂點間的距離是4,右焦點為F.
(1)求雙曲線的標(biāo)準(zhǔn)方程和漸近線方程;
(2)橢圓E的中心在原點O,右頂點與F點重合,上述雙曲線中斜率大于0的漸近線交橢圓于A,B兩點(A在第一象限),若AB⊥AF,試求橢圓E的離心率.
考點:雙曲線的簡單性質(zhì),橢圓的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)出雙曲線方程,由題意可得a=2,即可得到雙曲線方程和漸近線方程;
(2)設(shè)出橢圓方程,由題意可得a═2
2
,再由兩直線垂直的條件:斜率之積為-1,解方程可得b,由橢圓的a,b,c的關(guān)系可得c,再由離心率公式即可得到.
解答: 解:(1)設(shè)雙曲線的方程為
x2
a2
-
y2
a2
=1(a>0),
則2a=4,解得a=2,
∴雙曲線的方程為
x2
4
-
y2
4
=1,漸近線方程為y=±x.
(2)設(shè)橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1(a>b>0),
由(1)知F(2
2
,0),于是a=2
2

設(shè)A(x0,y0),則x0=y0.①
∵AB⊥AF,且AB的斜率為1,
∴AF的斜率為-1,故
y0
x0-2
2
=-1.②
由①②解得A(
2
,
2
).
代入橢圓方程有
2
(2
2
)
2
+
2
b2
=1,解得b2=
8
3
,
∴c2=a2-b2=8-
8
3
=
16
3
,得c=
4
3
3
,
∴橢圓E的離心率為e=
c
a
=
4
3
3
2
2
=
6
3
點評:本題考查橢圓和雙曲線的方程和性質(zhì),考查雙曲線的漸近線方程和橢圓的離心率的求法,考查兩直線垂直的條件,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,且2nSn+1-2(n+1)Sn=n(n+1)(n∈N+),數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N+),b3=5,其前9項和為63.求:數(shù)列{an}和{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意x∈R都有f(x)+f(x+6)=0成立.若y=f(x-1)的圖象關(guān)于點(1,0)對稱,且f(7)=4,則f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
3
=1(a>0)的離心率為
2
,則a=( 。
A、
3
B、3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的非負(fù)半軸重合.若曲線C1的方程為ρsin(θ-
π
6
)+2
3
=0,曲線C2的參數(shù)方程為
x=cosθ
y=sinθ

(Ⅰ) 將C1的方程化為直角坐標(biāo)方程;
(Ⅱ)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的等比數(shù)列{an}滿足:a2012=a2011+2a2010,若
aman
=2a1,則
1
m
+
5
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為1,在正方體的側(cè)面BCB1C1上到點A距離為
2
3
3
的點的集合形成一條直線,那么這條曲線的形狀是
 
,它的長度是
 

若將“在正方體的側(cè)面BCC1B1上到點A距離為
2
3
3
的點的集合”改為在正方體表面上與點P的距離為
2
3
3
的點的集合”那么這條曲線的形狀又是
 
,它的長度又是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA:sinB:sinC=4:5:8,則△ABC一定為( 。
A、正三角形B、等腰三角形
C、直角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
|x|的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案