設(shè)正方形ABCD的外接圓方程為x2+y2–6x+a=0(a<9),C、D點(diǎn)所在直線l的斜率為 ,求外接圓圓心M點(diǎn)的坐標(biāo)及正方形對(duì)角線AC、BD的斜率。

 

【答案】

kAC=

【解析】解:由(x–3)2+y2=9-a(a<9)可知圓心M的坐標(biāo)為(3,0)    

依題意:

MA,MB的斜率k滿足:                    

解得:kAC=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點(diǎn).
(1)邊長為
2
的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E.
①求軌跡E的方程;
②過軌跡E上一定點(diǎn)P(x0,y0)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長為a,設(shè)l2被軌跡E截得的弦長為b,求a+b的最大值.
(2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)

已知圓OO為坐標(biāo)原點(diǎn).

(1)邊長為的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E

①求軌跡E的方程;

②過軌跡E上一定點(diǎn)作相互垂直的兩條直線,并且使它們分別與圓O、軌跡E 相交,設(shè)被圓O截得的弦長為,設(shè)被軌跡E截得的弦長為,求的最大值.

  (2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)

已知圓OO為坐標(biāo)原點(diǎn).

(1)邊長為的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E

①求軌跡E的方程;

②過軌跡E上一定點(diǎn)作相互垂直的兩條直線,并且使它們分別與圓O、軌跡E 相交,設(shè)被圓O截得的弦長為,設(shè)被軌跡E截得的弦長為,求的最大值.

  (2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省宿遷市高考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點(diǎn).
(1)邊長為的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E.
①求軌跡E的方程;
②過軌跡E上一定點(diǎn)P(x,y)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長為a,設(shè)l2被軌跡E截得的弦長為b,求a+b的最大值.
(2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省宿遷市高考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點(diǎn).
(1)邊長為的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E.
①求軌跡E的方程;
②過軌跡E上一定點(diǎn)P(x,y)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長為a,設(shè)l2被軌跡E截得的弦長為b,求a+b的最大值.
(2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長度的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案