已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.

(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線l過定點(diǎn).

 

【答案】

(Ⅰ) ) (Ⅱ)見解析

【解析】(Ⅰ)設(shè)動(dòng)圓圓心C的坐標(biāo)為( x , y )則所以,所求動(dòng)圓圓心的軌跡C的方程為

(Ⅱ)證明:

設(shè)直線l方程為,聯(lián)立(其中

設(shè),若x軸是的角平分線,則

,即故直線l方程為,直線l過定點(diǎn).(1,0)

本題考查軌跡方程求法、直線方程、圓方程、直線與圓的位置關(guān)系及直線過定點(diǎn)問題.第一問曲線軌跡方程的求解問題是高考的熱點(diǎn)題型之一,準(zhǔn)確去除不滿足條件的點(diǎn)是關(guān)鍵.第二問對(duì)角平分線的性質(zhì)運(yùn)用是關(guān)鍵,對(duì)求定值問題的解決要控制好運(yùn)算量,同時(shí)注意好判別式的條件,以防多出結(jié)果.圓錐曲線問題經(jīng)常與向量、三角函數(shù)結(jié)合,在訓(xùn)練中要注意.本題無論是求圓心的軌跡方程,還是求證直線過定點(diǎn),計(jì)算量都不太大,對(duì)思維的要求挺高;設(shè)計(jì)問題背景,彰顯應(yīng)用魅力.

【考點(diǎn)定位】本題考查跡曲線方程求法、直線方程、圓方程、直線與圓的位置關(guān)系及直線過定點(diǎn)問題,屬于中檔題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試陜西卷理數(shù) 題型:044

已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得的弦MN的長為8.

(Ⅰ)求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得的弦MN的長為8.

(1)求動(dòng)圓圓心的軌跡C的方程.

(2)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.

(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線過定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.

   (Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

   (Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線l過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案