【題目】(2016·威海模擬)三人參加某娛樂闖關(guān)節(jié)目,假設(shè)甲闖關(guān)成功的概率是,乙、丙兩人同時(shí)闖關(guān)成功的概率是,甲、丙兩人同時(shí)闖關(guān)失敗的概率是,且三人各自能否闖關(guān)成功相互獨(dú)立.

(1)求乙、丙兩人各自闖關(guān)成功的概率;

(2)設(shè)ξ表示三人中最終闖關(guān)成功的人數(shù),求ξ的分布列和均值.

【答案】(1)乙、丙各自闖關(guān)成功的概率分別為,;(2).

【解析】

試題分析:(1)設(shè)甲,乙,丙各自闖關(guān)成功的事件分別為A1,A2,A3,它們相互獨(dú)立,由獨(dú)立事件的概率公式可列出方程組,從而解得乙、丙的概率;(2)ξ的取值可分別為0,1,2,3,分別計(jì)算概率可得分布列,注意各個(gè)事件的組成,如事件()=,由均值公式可得均值.

試題解析:

(1)記甲,乙,丙各自闖關(guān)成功的事件分別為A1A2,A3,

由已知A1,A2,A3相互獨(dú)立,且滿足

解得.

所以乙、丙各自闖關(guān)成功的概率分別為,.

(2)ξ的可能取值為0,1,2,3.

P(ξ=0)=

P(ξ=1)=,

P(ξ=2)=,

P(ξ=3)=.

所以隨機(jī)變量ξ的分布列為

ξ

0

1

2

3

P

所以隨機(jī)變量ξ的均值E(ξ)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列(其中第一項(xiàng)是,接下來的項(xiàng)是,再接下來的項(xiàng)是,依此類推)的前項(xiàng)和為,下列判斷:

的第項(xiàng);②存在常數(shù),使得恒成立;③;④滿足不等式的正整數(shù)的最小值是.

其中正確的序號(hào)是( )

A.①③B.①④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列方程組的解集:

12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:冪勢既同,則積不容異”. 其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面α所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為V1,V2,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為S1,S2,則(

A.如果S1,S2總相等,則V1=V2

B.如果S1=S2總相等,則V1V2不一定相等

C.如果V1=V2 ,則S1,S2總相等

D.存在這樣一個(gè)平面α使S1=S2相等,則V1=V2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與過原點(diǎn)的直線交于、兩點(diǎn),右焦點(diǎn)為,若的面積為,則橢圓的焦距的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、BC三種人工降雨方式分別對甲、乙、丙三地實(shí)施人工降雨,其實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如下:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

A

4

6

2

12

B

3

6

3

12

C

2

2

8

12

假定對甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(1)求甲、乙、丙三地都恰為中雨的概率;

(2)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只要是小雨或中雨即達(dá)到理想狀態(tài),記甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和均值E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上任意一點(diǎn),ANPM,垂足為N , AEPB,垂足為E .

1)求證:平面PAM⊥平面PBM.

2)求證:是二面角A-PB-M的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資金額x的函數(shù)關(guān)系為,B產(chǎn)品的利潤與投資金額x的函數(shù)關(guān)系為.(利潤與投資金額單位:萬元)

1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出x的取值范圍.

2)怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,曲線在點(diǎn)處的切線在兩坐標(biāo)軸上的截距之和為,求的值;

(2)若對于任意的及任意的,總有成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案