2.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.y=$\sqrt{x}$B.y=cos xC.y=3xD.y=ln|x|

分析 逐一判斷各個(gè)選項(xiàng)中的函數(shù)是否滿足既是偶函數(shù)又在(0,+∞)上單調(diào)遞增,從而得出結(jié)論.

解答 解:由于函數(shù)y=$\sqrt{x}$不是偶函數(shù),故排除A;
由于y=cos x在(0,+∞)上不滿足單調(diào)遞增,故排除B;
由于函數(shù)y=3x不是偶函數(shù),故排除C;
由于函數(shù)y=ln|x|既是偶函數(shù)又在(0,+∞)上單調(diào)遞增,故D滿足條件,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性的判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若f(x)=ex+ae-x為偶函數(shù),則f(x-1)<e+e-1的解集為( 。
A.(2,+∞)B.(-∞,2)C.(0,2)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=x2-4x-3的減區(qū)間為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已f(x)=a${\;}^{x-\frac{1}{2}}$,f(lga)=$\sqrt{10}$,則a的值為10 或$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.過圓O外一點(diǎn)M(a,b)向圓O:x2+y2=r2引兩條切線,切點(diǎn)分別為A,B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖1所示,向高為H的水瓶1號(hào)、2號(hào)、3號(hào)、4號(hào)同時(shí)以等速注水,注滿為止.

若水量V與水深h函數(shù)圖象是圖2的,則對(duì)應(yīng)水瓶的形狀是1號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\sqrt{3-2x}$的定義域是( 。
A.($\frac{3}{2}$,+∞)B.[$\frac{3}{2}$,+∞)C.(-∞,$\frac{3}{2}$)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn且滿足Sn=2an-1,n∈N*;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1,求{Tn}的通項(xiàng)公式;
(3)設(shè)有m項(xiàng)的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+$\frac{1}{_{1}}$)+lg(1+$\frac{1}{_{2}}$)+…+lg(1+$\frac{1}{_{m}}$)=lg(log2am).
問數(shù)列{bn}最多有幾項(xiàng)?并求出這些項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=(x2+bx-4)logax(a>0且a≠1)若對(duì)任意x>0,恒有y≤0,則ba的取值范圍是(1,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案