如圖所示為某一平面圖形的直觀圖,則此平面圖形可能是下列中的( )

A.
B.
C.
D.
【答案】分析:本題是一個(gè)選擇題,可以用選擇題的方法來(lái)解,觀察直觀圖右邊的邊與縱軸平行,與x軸垂直,這樣只有A,C符合題意,由直觀圖知,上下兩條邊是不相等的,只有C符合題意
解答:解:設(shè)直觀圖中與x′軸和y′軸的交點(diǎn)分別為A′和B′,
根據(jù)斜二測(cè)畫(huà)法的規(guī)則在直角坐標(biāo)系中先做出對(duì)應(yīng)的A和B點(diǎn),
再由平行與x′軸的線(xiàn)在原圖中平行于x軸,且長(zhǎng)度不變,
作出原圖可知選C
故選C
點(diǎn)評(píng):本題考查空間幾何體的直觀圖,考查直觀圖的做法,這種題目是直觀圖經(jīng)常考查的題目,比較簡(jiǎn)單,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某工廠擬建一座平面圖(如圖所示)為矩形且面積為200m2的三級(jí)污水處理池,由于地形限制,長(zhǎng)、寬都不能超過(guò)16m.如果池外周壁建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)為每米248元,池底建造單價(jià)為每平方米80元(池壁厚度忽略不計(jì),且池?zé)o蓋).
(1)寫(xiě)出總造價(jià)y(元)與污水處理池長(zhǎng)x(m)的函數(shù)關(guān)系式,并指出其定義域;
(2)求污水處理池的長(zhǎng)和寬各為多少時(shí),污水處理池的總造價(jià)最低?并求出最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場(chǎng),廣場(chǎng)的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對(duì)稱(chēng)的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長(zhǎng)為xm,DQ長(zhǎng)為ym.
(I)試找出x與y滿(mǎn)足的等量關(guān)系式;
(Ⅱ)若該廣場(chǎng)的占地面積不超過(guò)2800m2,求x的取值范圍;
(Ⅲ)求該廣場(chǎng)的總造價(jià)的最小值及此時(shí)AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠擬建一座平面圖為矩形且面積為400平方米的三級(jí)污水處理池,平面圖如圖所示,池外圈建造單價(jià)為每米200元,中間兩條隔墻建造單價(jià)為每米250元,池底建造單價(jià)為每平方米80元(池壁的厚度忽略不計(jì)且池?zé)o蓋).若受場(chǎng)地限制,長(zhǎng)與寬都不能超過(guò)25米,則污水池的最低造價(jià)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場(chǎng),廣場(chǎng)的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對(duì)稱(chēng)的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長(zhǎng)為xm,DQ長(zhǎng)為ym.
(I)試找出x與y滿(mǎn)足的等量關(guān)系式;
(Ⅱ)若該廣場(chǎng)的占地面積不超過(guò)2800m2,求x的取值范圍;
(Ⅲ)求該廣場(chǎng)的總造價(jià)的最小值及此時(shí)AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省無(wú)錫市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場(chǎng),廣場(chǎng)的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對(duì)稱(chēng)的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長(zhǎng)為xm,DQ長(zhǎng)為ym.
(I)試找出x與y滿(mǎn)足的等量關(guān)系式;
(Ⅱ)若該廣場(chǎng)的占地面積不超過(guò)2800m2,求x的取值范圍;
(Ⅲ)求該廣場(chǎng)的總造價(jià)的最小值及此時(shí)AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案