求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.
(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42
由題意,設所求圓的方程為圓C:(x-a)2+(y-b)2=r2.
圓C與直線y=0相切,且半徑為4,則圓心C的坐標為C1(a,4)或C2(a,-4).又已知圓x2+y2-4x-2y-4=0的圓心A的坐標為(2,1),半徑為3.若兩圓相切,則|CA|=4+3=7或|CA|=4-3=1.
①當C1(a,4)時,有(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(無解),故可得a=2±2.∴所求圓方程為(x-2-2)2+(y-4)2=42或(x-2+2)2+(y-4)2=42.
②當C2(a,-4)時,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(無解),故a=2±2.
∴所求圓的方程為(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓經過點,且圓心在直線上.
(1)求圓的方程;
(2)若點為圓上任意一點,求點到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點M(1,2)的直線l將圓(x-2)2+y2=9分成兩段弧,當其中的劣弧最短時,直線的方程是(  )
A.x=1B.y=1
C.x-y+1=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關于直線x-y-1=0對稱,則圓C2的方程為(  )
A.(x-1)2+(y+1)2=1
B.(x+2)2+(y-2)2=1
C.(x+1)2+(y-1)2=1
D.(x-2)2+(y+2)2=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知是⊙的切線,為切點.是⊙的一條割線,交⊙兩點,點是弦的中點.若圓心內部,則的度數(shù)為___.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連結BC并延長至D,使得CD=BC,求AC與OD的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點.記過三個交點的圓為圓C.
(1)求實數(shù)b的取值范圍;
(2)求圓C的方程;
(3)圓C是否經過定點(與b的取值無關)?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓心在x軸上、半徑為的圓C位于y軸左側,且被直線x+2y=0截得的弦長為4,則圓C的方程是(  )
A.(x-)2+y2=5B.(x+)2+y2=5
C.(x-5)2+y2=5D.(x+5)2+y2=5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

圓心是A(2,–3),半徑長等于5的圓的標準方程是                 ;

查看答案和解析>>

同步練習冊答案