【題目】在平面直角坐標(biāo)系xOy中,已知橢圓Γ: =1,A為Γ的上頂點(diǎn),P為Γ上異于上、下頂點(diǎn)的動點(diǎn),M為x正半軸上的動點(diǎn).
(1)若P在第一象限,且|OP|= ,求P的坐標(biāo);
(2)設(shè)P( ),若以A、P、M為頂點(diǎn)的三角形是直角三角形,求M的橫坐標(biāo);
(3)若|MA|=|MP|,直線AQ與Γ交于另一點(diǎn)C,且 , ,求直線AQ的方程.
【答案】
(1)解:設(shè)P(x,y)(x>0,y>0),
∵橢圓Γ: =1,A為Γ的上頂點(diǎn),
P為Γ上異于上、下頂點(diǎn)的動點(diǎn),
P在第一象限,且|OP|= ,
∴聯(lián)立 ,
解得P( , )
(2)解:設(shè)M(x0,0),A(0,1),
P( ),
若∠P=90°,則 ,即(x0﹣ ,﹣ )(﹣ , )=0,
∴(﹣ )x0+ ﹣ =0,解得x0= .
如圖,若∠M=90°,則 =0,即(﹣x0,1)( ﹣x0, )=0,
∴ =0,解得x0=1或x0= ,
若∠A=90°,則M點(diǎn)在x軸負(fù)半軸,不合題意.
∴點(diǎn)M的橫坐標(biāo)為 ,或1,或
(3)解:設(shè)C(2cosα,sinα),
∵ ,A(0,1),
∴Q(4cosα,2sinα﹣1),
又設(shè)P(2cosβ,sinβ),M(x0,0),
∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,
整理得:x0= cosβ,
∵ =(4cosα﹣2cosβ,2sinα﹣sinβ﹣1), =(﹣ cosβ,﹣sinβ), ,
∴4cosα﹣2cosβ=﹣5cosβ,
且2sinα﹣sinβ﹣1=﹣4sinβ,
∴cosβ=﹣ cosα,且sinα= (1﹣2sinα),
以上兩式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα= ,或sinα=﹣1(舍去),
此時(shí),直線AC的斜率kAC=﹣ = (負(fù)值已舍去),如圖.
∴直線AQ為y= x+1.
【解析】(1)設(shè)P(x,y)(x>0,y>0),聯(lián)立 ,能求出P點(diǎn)坐標(biāo).(2)設(shè)M(x0,0),A(0,1),P( ),由∠P=90°,求出x0= ;由∠M=90°,求出x0=1或x0= ;由∠A=90°,則M點(diǎn)在x軸負(fù)半軸,不合題意.由此能求出點(diǎn)M的橫坐標(biāo).(3)設(shè)C(2cosα,sinα),推導(dǎo)出Q(4cosα,2sinα﹣1),設(shè)P(2cosβ,sinβ),M(x0,0)推導(dǎo)出x0= cosβ,從而 4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣ cosα,且sinα= (1﹣2sinα),由此能求出直線AQ.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出的是計(jì)算 的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( )
A.i≤100
B.i>100
C.i>50
D.i≤50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職業(yè)學(xué)校的王亮同學(xué)到一家貿(mào)易公司實(shí)習(xí),恰逢該公司要通過海運(yùn)出口一批貨物,王亮同學(xué)隨公司負(fù)責(zé)人到保險(xiǎn)公司洽談貨物運(yùn)輸期間的投保事宜,保險(xiǎn)公司提供了繳納保險(xiǎn)費(fèi)的兩種方案:
①一次性繳納50萬元,可享受9折優(yōu)惠;
②按照航行天數(shù)交納:第一天繳納0.5元,從第二天起每天交納的金額都是其前一天的2倍,共需交納20天.
請通過計(jì)算,幫助王亮同學(xué)判斷那種方案交納的保費(fèi)較低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,用35個(gè)單位正方形拼成一個(gè)矩形,點(diǎn)P1、P2、P3、P4以及四個(gè)標(biāo)記為“▲”的點(diǎn)在正方形的頂點(diǎn)處,設(shè)集合Ω={P1 , P2 , P3 , P4},點(diǎn)P∈Ω,過P作直線lP , 使得不在lP上的“▲”的點(diǎn)分布在lP的兩側(cè).用D1(lP)和D2(lP)分別表示lP一側(cè)和另一側(cè)的“▲”的點(diǎn)到lP的距離之和.若過P的直線lP中有且只有一條滿足D1(lP)=D2(lP),則Ω中所有這樣的P為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,已知 , , 底面 ,且 , , 為 的中點(diǎn), 在 上,且 .
(1)求證:平面 平面 ;
(2)求證: 平面 ;
(3)求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日至24日,中國共產(chǎn)黨第十九次全國人民代表大會在北京順利召開.大會期間,北京某高中舉辦了一次“喜迎十九大”的讀書讀報(bào)知識競賽,參賽選手為從高一年級和高二年級隨機(jī)抽取的各100名學(xué)生.圖1和圖2分別是高一年級和高二年級參賽選手成績的頻率分布直方圖.
(1)分別計(jì)算參加這次知識競賽的兩個(gè)年級學(xué)生的平均成績;
(2)完成下面2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下,認(rèn)為高一、高二兩個(gè)年級學(xué)生這次讀書讀報(bào)知識競賽的成績有差異.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, ,角A的平分線AD交BC于點(diǎn)D,設(shè)∠BAD=α, .
(Ⅰ)求sinC;
(Ⅱ)若 ,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com