某旅行社為調(diào)查市民喜歡“人文景觀”景點是否與年齡有關(guān),隨機抽取了55名市民,得到數(shù)據(jù)如下表:

 
喜歡
不喜歡[來源:學(xué)科網(wǎng)ZXXK]
合計
大于40歲
20
5
25
20歲至40歲
10
20
30
合計
30
25
55
(Ⅰ)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關(guān)?
(Ⅱ)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取6人作進一步調(diào)查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

(1)有的把握認為喜歡“人文景觀”景點與年齡有關(guān);(2).

解析試題分析:本題主要考查實際問題中的獨立性檢驗、隨機事件的概率、分層抽樣等數(shù)學(xué)知識,考查計算能力,綜合分析問題解決問題的能力.第一問,根據(jù)已知的表格讀出的值,利用的公式計算,再與作比較,得到概率值判斷相關(guān)性;第二問,先用分層抽樣得出抽取的6人中“大于40歲”和“20歲至40歲”的分別多少人,用字母代表,在這6人中選2人,所有情況可以用字母一一列出共15種,其中恰有1名“大于40歲”和1名“20歲至40歲”之間的市民的情況有8種,所以概率為.
試題解析:(1)由公式
所以有的把握認為喜歡“人文景觀”景點與年齡有關(guān)                        5分
(2)設(shè)所抽樣本中有個“大于40歲”市民,則,得
所以樣本中有4個“大于40歲”的市民,2個“20歲至40歲”的市民,分別記作,從中任選2人的基本事件有
共15個                         9分
其中恰有1名“大于40歲”和1名“20歲至40歲”之間的市民的事件有共8個
所以恰有1名“大于40歲”和1名“20歲至40歲”之間的市民的概率為     12分
考點:1.獨立性檢驗;2.隨機事件的概率;3.分層抽樣.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

有7位歌手(1至7號)參加一場歌唱比賽,由500名大眾評委現(xiàn)場投票決定歌手名次.根據(jù)年齡將大眾評委分為五組,各組的人數(shù)如下:

組別
A
B
C
D
E
人數(shù)
50
100
150
150
50
(1)為了調(diào)查評委對7位歌手的支持狀況,現(xiàn)用分層抽樣方法從各組中抽取若干評委,其中從B組抽取了6人.請將其余各組抽取的人數(shù)填入下表.
組別
A
B
C
D
E
人數(shù)
50
100
150
150
50
抽取人數(shù)
 
6
 
 
 
(2)在(1)中,若A,B兩組被抽到的評委中各有2人支持1號歌手,現(xiàn)從這兩組被抽到的評委中分別任選1人,求這2人都支持1號歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時間,隨機對100名男生和100名女生進行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人數(shù)
5
25
30
25
15
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人數(shù)
10
20
40
20
10
(1)從這100名男生中任意選出3人,求其中恰有1人上網(wǎng)時間少于60分鐘的概率;
(2)完成下面的2×2列聯(lián)表,并回答能否有90%的把握認為“大學(xué)生上網(wǎng)時間與性別有關(guān)”?
 
上網(wǎng)時間少于60分鐘
上網(wǎng)時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:K2
P(K2≥k0)
0.100
0.050
0.025
0.010
0.005
k0
2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某社團組織20名志愿者利用周末和節(jié)假日參加社會公益活動,志愿者中,年齡在20至40歲的有12人,年齡大于40歲的有8人.
(1)在志愿者中用分層抽樣方法隨機抽取5名,年齡大于40歲的應(yīng)該抽取幾名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年齡大于40歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)《中國新聞網(wǎng)》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:

態(tài)度

 

應(yīng)該取消
應(yīng)該保留
無所謂
在校學(xué)生
2100人
120人
y人
社會人士
600人
x人
z人
已知在全體樣本中隨機抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

城市公交車的數(shù)量太多容易造成資源的浪費,太少又難以滿足乘客需求,為此,某市公交公司在某站臺的名候車乘客中隨機抽取人,將他們的候車時間作為樣本分成組,如下表所示(單位:min):

組別
候車時間
人數(shù)

 













(1)求這名乘客的平均候車時間;
(2)估計這名乘客中候車時間少于分鐘的人數(shù);
(3)若從上表第三、四組的人中選人作進一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有25周歲以上(含2S周歲)工人300名,25周歲以下工人200名為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100),分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(1)求樣本中“25周歲以上(含25周歲)組”抽取的人數(shù)、日生產(chǎn)量平均數(shù);
(2)若“25周歲以上組”中日平均生產(chǎn)90件及90件以上的稱為“生產(chǎn)能手”;“25周歲以下組”中日平均生產(chǎn)不足60件的稱為“菜鳥”。從樣本中的“生產(chǎn)能手”和”菜鳥”中任意抽取2人,求這2人日平均生產(chǎn)件數(shù)之和X的分布列及期望。(“生產(chǎn)能手”日平均生產(chǎn)件數(shù)視為95件,“菜鳥”日平均生產(chǎn)件數(shù)視為55件)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用分層抽樣方法從高中三個年級的相關(guān)人員中抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表:(單位:人)

年級
相關(guān)人數(shù)
抽取人數(shù)
高一
99

高二
27

高三
18
2
(Ⅰ)求,
(Ⅱ)若從高二、高三年級抽取的人中選人,求這二人都來自高二年級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

口袋中有n(n∈N)個白球,3個紅球.依次從口袋中任取一球,如果取到紅球,那么繼續(xù)取球,且取出的紅球不放回;如果取到白球,就停止取球.記取球的次數(shù)為X,若P(X=2)=求:
(1)n的值;
(2)X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

同步練習冊答案