(本小題滿分13分)
已知橢圓的離心率為,橢圓短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值。
(Ⅰ)(Ⅱ)①②
【解析】
試題分析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013072812190296843248/SYS201307281220018739767689_DA.files/image005.png">滿足,
。解得,則橢圓方程為 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分
(Ⅱ)(1)將代入中得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013072812190296843248/SYS201307281220018739767689_DA.files/image012.png">中點(diǎn)的橫坐標(biāo)為,所以,解得 ┄┄┄┄8分
(2)由(1)知,
所以
;┄┄┄┄┄┄┄┄┄11分
=┄┄┄┄┄┄┄┄┄┄┄┄┄┄13分
考點(diǎn):本題考查了橢圓方程的求法及直線與橢圓的位置關(guān)系
點(diǎn)評:圓錐曲線是歷年高考中比較常見的壓軸題之一,近年高考中其解答難度有逐漸降低的趨勢,通過解析幾何的自身特點(diǎn),結(jié)合相應(yīng)的數(shù)學(xué)知識,比如不等式、數(shù)列、函數(shù)、向量、導(dǎo)數(shù)等加以綜合。這就要求在分析、解決問題時要充分利用數(shù)形結(jié)合、設(shè)而不求法、弦長公式及韋達(dá)定理綜合思考,重視函數(shù)與方程思想、數(shù)形結(jié)合思想、對稱思想、等價轉(zhuǎn)化思想的應(yīng)用。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com