已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
,若f(x)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)當(dāng)0<x≤
π
3
時(shí),求f(x)的值域.
分析:(I)由函數(shù)f(x)=
a
b
轉(zhuǎn)化為sin(2ωx+
π
6
)+
1
2
,利用周期公式求得ω;
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
π
6
)+
1
2
,由0<x≤
π
3
,得
π
6
<2x+
π
6
6
,再利用整體思想求解.
解答:解:(Ⅰ)f(x)=
3
sinωxcosωx+cos2ωx(2分)
=
3
2
sin2ωx+
1
2
(1+cos2ωx)
=sin(2ωx+
π
6
)+
1
2
(4分)
∵ω>0,∴T=π=
,∴ω=1(6分)
(Ⅱ)由(1),得f(x)=sin(2x+
π
6
)+
1
2
,
∴0<x≤
π
3
,∴
π
6
<2x+
π
6
6
(9分)
∴f(x)∈[1,
3
2
](12分)
點(diǎn)評(píng):本題主要考查用向量運(yùn)算將函數(shù)轉(zhuǎn)化為一個(gè)角的一種三角函數(shù),進(jìn)一步研究三角函數(shù)的周期性和值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3sin α,cos α),
b
=(2sin α,5sin α-4cos α),α∈(
2
,2π)
,且
a
b

(1)求tan α的值;
(2)求cos(
α
2
+
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0),函數(shù)f(x)=
a
b
+
1
2
的圖象的兩相鄰對(duì)稱軸間的距離為
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
時(shí),f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調(diào)區(qū)間;對(duì)稱軸方程;對(duì)稱中心坐標(biāo);
(3)當(dāng)0<x≤
π
3
時(shí),試求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,設(shè)f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)函數(shù)f(x)的圖象可由函數(shù)y=sin2x經(jīng)過怎樣的變換得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案