【答案】
分析:(1)兩個(gè)函數(shù)的交點(diǎn)轉(zhuǎn)化為一個(gè)函數(shù)與x軸的交點(diǎn),轉(zhuǎn)化為對(duì)應(yīng)方程的有實(shí)數(shù)解,換元轉(zhuǎn)化為二次方程有非負(fù)實(shí)數(shù)根,由送別式恒大于0與兩根之積為負(fù)得二次方程一定有正根,問題得證.
(2)求導(dǎo),由題意得導(dǎo)數(shù)恒小于1,分離參數(shù)a,設(shè)另一邊為函數(shù),求導(dǎo)得導(dǎo)數(shù)恒大于0,函數(shù)在(0,1]上遞增,得最值,求出參數(shù)a的取值范圍;
(3)把函數(shù)解析式代入不等式,考慮反面,轉(zhuǎn)化為恒成立問題,設(shè)絕對(duì)值符號(hào)內(nèi)的為F(x),求導(dǎo),得函數(shù)單調(diào)性,結(jié)合函數(shù)圖象,討論函數(shù)在[0,1]上的單調(diào)性,進(jìn)而求出最值,令最值的絕對(duì)值小于等于1,得實(shí)數(shù)a的值.
解答:解:(1)設(shè)h(x)=f(x)-g(x)
即證函數(shù)h(x)與x軸有交點(diǎn),
即證方程x
4-2ax
2-1=0有實(shí)根,設(shè)t=x
2即證方程t
2-2at-1=0有非負(fù)實(shí)數(shù)根,
而△=4a
2+4>0,t
1t
2=-1<0
∴方程t
4-2at-1=0恒有正根
∴f(x)與g(x)圖象恒有公共點(diǎn)(4分)
(2)f′(x)=4x
3-4ax
∵當(dāng)0<x≤1時(shí)4xa>4x
3-1恒成立
即
,設(shè)y=x
2-
,
則y′=2x+
>0,
∴y=x
2-
在(0,1]上單調(diào)遞增,
∴a>1-
=
∴a的取值范圍為
(8分)
(3)由題設(shè)知當(dāng)x∈[0,1]時(shí),|4x
3-4ax|≤1恒成立
記F(x)=4x
3-4ax
若a≤0則F(1)=4(1-a)≥4不滿足條件
故a>0而
①當(dāng)
時(shí),即0<a<3時(shí),F(xiàn)(x)在
上遞減,在
上遞增,
于是
∴
,∴
,∴
②當(dāng)
時(shí),即a≥3時(shí),F(xiàn)(x)在[0,1]上遞減,
于是
矛盾
綜上所述:
(14分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,一是當(dāng)問題從正面不容易解決時(shí),注意從反面進(jìn)行突破,這是一難點(diǎn),二是把不等式問題轉(zhuǎn)化為求函數(shù)的最值,三是在求最值過程中,需求函數(shù)的單調(diào)性,在求單調(diào)性的過程中,要分類討論,這又是一難點(diǎn),四把問題最后再轉(zhuǎn)化為求不等式.