如圖,已知四棱錐,底面為菱形,平面,、分別是、的中點.

(1)判定是否垂直,并說明理由。

(2)設,若上的動點,與平面所成最大角的  

正切值為,求四棱錐的體積。

答案

(1)略

中,,所以當最短時,最大,

即當時,最大.

此時,

       因此.又,所以, 

所以—————12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐,底面為菱形,平面,,、分別是、的中點。

(1)證明:;

(2)若上的動點,與平面所成最大角的正切值為,求銳二面角的余弦值;

(3)在(2)的條件下,設,求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆浙江紹興一中高二第一學期期中測試文科數(shù)學試卷(解析版) 題型:解答題

如圖,已知四棱錐,底面是平行四邊形,點在平面上的射影邊上,且,

(Ⅰ)設的中點,求異面直線所成角的余弦值;

(Ⅱ)設點在棱上,且.求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省高三下學期第一次綜合練習理科數(shù)學 題型:解答題

(本題滿分14分)

如圖,已知四棱錐,底面為菱形,平面,

 是的中點,為線段上一點.

(Ⅰ)求證: ;

(Ⅱ)若上的動點,與平面所成最大角的 正切值為,若二面角的余弦值為,求的值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年云南省高三上學期第一次月考試題文科數(shù)學 題型:解答題

(本小題滿分12分)

如圖,已知四棱錐的底面是正方形,,且,點分別在側棱上,且。

(Ⅰ)求證:

(Ⅱ)若,求平面與平面所成二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分12分)如圖,已知四棱錐,底面為菱形,⊥平面,,分別是、的中點。

(Ⅰ)證明:;

(Ⅱ)若上的動點,與平面所成最大角的正切值為,求二面角的余弦值。

 

 

 

 

 

 

 

 

.COM

查看答案和解析>>

同步練習冊答案