【題目】近幾年,京津冀等地數城市指數“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點圖知y與x具有線性相關關系,求y關于x的線性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當一天內PM2.5的濃度平均值在(0,50]內,空氣質量等級為優(yōu);當一天內PM2.5的濃度平均值在(50,100]內,空氣質量等級為良.為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數.)
參考公式:回歸直線的方程是,其中, .
【答案】(1) (2) 車流量為8萬輛時,PM2.5的濃度約為67微克/立方米, 應控制當天車流量在13.5萬輛以內.
【解析】試題分析:(Ⅰ)根據公式求出回歸系數,求出平均值,代入方程,可寫出線性回歸方程;(Ⅱ)(ⅰ)根據(Ⅰ)的性回歸方程,代入x=8求出PM2.5的濃度;(ⅱ)根據題意信息得:6x+19≤100,即x≤13.5,解得x的取值范圍即可
解析:
(Ⅰ)由數據可得:
故y關于x的線性回歸方程為
(Ⅱ)(ⅰ)當車流量為8萬輛時,即x=8時, 故車流量為8萬輛時,PM2.5的濃度約為67微克/立方米.
(ⅱ)根據題意信息得:6x+19≤100,即x≤13.5,∴為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在13.5萬輛以內。
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為,點在拋物線上,且。
(Ⅰ)求拋物線的標準方程及實數的值;
(Ⅱ)直線過拋物線的焦點,且與拋物線交于兩點,若(為坐標原點)的面積為,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個圓柱形圓木的底面半徑為1 m,長為10 m,將此圓木沿軸所在的平面剖成兩部分.現要把其中一部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關于θ的函數表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (為實常數) .
(I)當時,求函數在上的最大值及相應的值;
(II)當時,討論方程根的個數.
(III)若,且對任意的,都有,求
實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據;
(2)現要從中選派一人參加數學競賽,從統(tǒng)計學的角度(在平均數、方差或標準差中選兩個)分析,你認為選派哪位學生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中, = == 分別在上, ,現將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點,使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點到平面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱臺ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點D是B1C1的中點,求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列和等比數列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據等差數列的, ,列出關于首項、公差的方程組,解方程組可得與的值,從而可得數列的通項公式;(2)利用已知條件根據題意列出關于首項 ,公比 的方程組,解得、的值,求出數列的通項公式,然后利用等比數列求和公式求解即可.
試題解析:(1)設等差數列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結束】
18
【題目】已知命題:實數滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數的取值范圍;
(2)若是的充分不必要條件,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com