已知an=
3n-1,(n為偶數(shù))
2n,(n為奇數(shù))
,Sn是其前n項(xiàng)的和,求S9和S2n
考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件,根據(jù)n的奇偶性,利用分組求和法解題.
解答: 解:∵an=
3n-1,(n為偶數(shù))
2n,(n為奇數(shù))
,
S9=(21+23+25+27+29)+[(3×2-1)+(3×4-1)+(3×6-1)+(3×8-1)]=738,
S2n=(21+23+25+…+22n-3+22n-1)+[(3×2-1)+(3×4-1)+(3×6-1)+…+(3×2n-1)]
=
2
3
(4n-1)+3n2+2n
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要注意分組求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)于獨(dú)立性檢驗(yàn)的說(shuō)法中,錯(cuò)誤的是(  )
A、獨(dú)立性檢驗(yàn)得到的結(jié)論一定正確
B、獨(dú)立性檢驗(yàn)依賴(lài)小概率原理
C、樣本不同,獨(dú)立性檢驗(yàn)的結(jié)論可能有差異
D、獨(dú)立性檢驗(yàn)不是判定兩事物是否相關(guān)的唯一方法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
kx3-k2x2+12x
,是否存在實(shí)數(shù)k,使函數(shù)在(1,2)上遞減,在(2,+∞)上遞增?若存在,求出所有k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=k2x4-
2
3
x3-kx2+2x
,是否存在實(shí)數(shù)k,使函數(shù)在(1,2)上遞減,在(2,+∞)上遞增?若存在,求出所有k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

淘寶賣(mài)家在某商品的所有買(mǎi)家中,隨機(jī)選擇男女買(mǎi)家各50位進(jìn)行調(diào)查,他們的評(píng)分等級(jí)如下:
評(píng)分等級(jí)[0,1](1,2](2,3](3,4](4,5]
女(人數(shù))28101812
男(人數(shù))4919108
(Ⅰ)從評(píng)分等級(jí)為(3,4]的人中隨機(jī)選2個(gè)人,求恰有1人是女性的概率;
(Ⅱ)規(guī)定:評(píng)分等級(jí)在[0,3]的為不滿(mǎn)意該商品,在(3,5]的為滿(mǎn)意該商品.完成下列2×2列聯(lián)表并幫助賣(mài)家判斷:能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為滿(mǎn)意該商品與性別有關(guān)系?
滿(mǎn)意該商品不滿(mǎn)意該商品總計(jì)
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=2x
(2)y=lnx
(3)y=x3+cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)C1的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),將曲線(xiàn)C1上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的
3
倍,得到曲線(xiàn)C2.以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn)l:ρ(cosθ-2sinθ)=6.
(1)求曲線(xiàn)C2和直線(xiàn)l的普通方程;
(2)P為曲線(xiàn)C2上任意一點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
n-1+2 (n為正整數(shù)).
(1)令bn=2nan,求證數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式,并求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在實(shí)數(shù)m,使得f(x)=-cos2x+2mcosx+m2+4m-3的最大值為3m,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案