【答案】
分析:(1)由3tS
n-(2t+3)S
n-1=3t,可得3ts
n+1-(2t+3)S
n =3t (n≥2),兩式相減得3ta
n+1-(2t+3)a
n =0.化簡變形可得
=
(n≥1),故數(shù)列{a
n}為等比數(shù)列,
從而證得數(shù)列{b
n}是以 b
1=1為首項(xiàng),以d=
為公差的等差數(shù)列,從而求得 b
n=
n+
.
(2)化簡 T
n 為 b
2(b
1-b
3)+b
4(b
3-b
5)+…+b
2n(b
2n-1-b
2n+1)=2d (b
2+b
4+…+b
2n)=2×
[n•
+
],運(yùn)算求得結(jié)果.
解答:解:(1)證明:∵3tS
n-(2t+3)S
n-1=3t,∴3ts
n+1-(2t+3)S
n =3t (n≥2),兩式相減得3ta
n+1-(2t+3)a
n =0.
又t>0,∴
=
(n≥2),又當(dāng)n=2時(shí),3ts
2-(2t+3)s
1=3t,
即3t (a
1+a
2)-(2t+3)a
1=3t,得 a
2=
,即
=
,∴
=
(n≥1),∴數(shù)列{a
n}為等比數(shù)列.
由已知得f(n)=
,∴
=
=b
n-1+
(n≥2).
∴數(shù)列{b
n}是以 b
1=1為首項(xiàng),以d=
為公差的等差數(shù)列,故 b
n=
n+
.
(2)T
n=(b
1b
2-b
2b
3)+(b
3b
4-b
4b
5)+…+(b
2n-1b
2n-b
2nb
2n+1)=b
2(b
1-b
3)+b
4(b
3-b
5)+…+b
2n(b
2n-1-b
2n+1)
=2d (b
2+b
4+…+b
2n)=2×
[n•
+
]=-
-
.
點(diǎn)評:本題主要考查利用數(shù)列的遞推關(guān)系求數(shù)列的通項(xiàng)公式,等差關(guān)系、等比關(guān)系的確定,等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,屬于難題.