如圖6,AD、BE、CF是△ABC的三條高.求證:AD、BE、CF相交于一點(diǎn).

圖6

證明:設(shè)BE、CF相交于點(diǎn)H,并設(shè)=b,=c,=h,

=h-b,=h-c,=c-b.

因?yàn)?SUB>,,

所以(h-bc=0,(h-cb=0,

即(h-bc=(h-cb.

化簡(jiǎn),得h·(c-b)=0.

所以.

所以AH與AD共線,即AD、BE、CF相交于一點(diǎn)H.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足為A,以腰BC為直徑的半圓O切AD于點(diǎn)E,連接BE,若BC=6,∠EBC=30°,則梯形ABCD的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn).
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對(duì)應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若AD=2
3
,AE=6
,求EC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(1)求證:∠P=∠EDF;
(2)求證:CE•EB=EF•EP;
(3)若CE:BE=3:2,DE=6,EF=4,求PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案