【題目】已知圓與拋物線的準(zhǔn)線交于,兩點(diǎn),且

(1)求拋物線的方程;

(2)若直線與曲線交于,兩點(diǎn),且曲線上存在兩點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍及的取值范圍.

【答案】1;(2)實(shí)數(shù)的取值范圍為,的取值范圍是

【解析】

1)設(shè)圓心到準(zhǔn)線的距離為,求得,再結(jié)合圓的弦長(zhǎng)公式,求得,即可得到拋物線的方程;

2)聯(lián)立方程組,根據(jù),解得,且,,求得,設(shè)直線方程為,聯(lián)立方程組,求得,求得的表達(dá)式,即可求解.

1)由題意,圓的半徑,圓心為,

設(shè)圓心到準(zhǔn)線的距離為,則,

又由,可得,

故拋物線的方程為

2)聯(lián)立方程組,可得

因?yàn)橹本與曲線交與,兩點(diǎn),所以,解得,①

設(shè),則,

所以

因?yàn)辄c(diǎn),關(guān)于直線對(duì)稱,設(shè)直線方程為,

直線,聯(lián)立得,

,得,

設(shè),中點(diǎn),則,

因?yàn)辄c(diǎn)也在直線上,所以,

所以,代入,②

由①②得,實(shí)數(shù)的取值范圍為

又因?yàn)?/span>,

所以

因?yàn)?/span>,所以,所以

所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形且,側(cè)面底面,且側(cè)面是正三角形,中點(diǎn).

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并作出了如圖的散點(diǎn)圖.

溫度/

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/個(gè)

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作為該昆蟲的產(chǎn)卵數(shù)與溫度的回歸方程類型?(給出判斷即可,不必說明理由).

2)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;(保留兩位有效數(shù)字)

3)根據(jù)關(guān)于的回歸方程,估計(jì)溫度為33℃時(shí)的產(chǎn)卵數(shù).

(參考數(shù)據(jù):

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級(jí)各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表和頻率分布直方圖,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱為“手機(jī)迷”.

I)將頻率視為概率,估計(jì)哪個(gè)年級(jí)的學(xué)生是“手機(jī)迷”的概率大?請(qǐng)說明理由.

II)在高二的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?

非手機(jī)迷

手機(jī)迷

合計(jì)

合計(jì)

附:隨機(jī)變量(其中為樣本總量).

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

span>2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等比數(shù)列的公比大于,其前項(xiàng)和為,是等差數(shù)列,已知,,.

1)求,的通項(xiàng)公式

2)設(shè),數(shù)列的前項(xiàng)和為,求;

3)設(shè),其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足以下三個(gè)條件:①對(duì)于任意的,都有;②對(duì)于任意的都有③函數(shù)的圖象關(guān)于y軸對(duì)稱,則下列結(jié)論中正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表下所示:

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),均為大于零的常數(shù)),哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;

3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

西安公交六公司車隊(duì)為緩解周邊居民出行壓力,以萬元的單價(jià)購(gòu)進(jìn)了一批新車,根據(jù)以往的經(jīng)驗(yàn)可知,每輛車每個(gè)月的運(yùn)營(yíng)成本約為萬元.已知該線路公交車票價(jià)為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),假設(shè)這批車需要)年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中,

參考公式:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)在區(qū)間為自然對(duì)數(shù)的底數(shù))上有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)若在為自然對(duì)數(shù)的底數(shù))上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小姜同學(xué)有兩個(gè)盒子,最初盒子6枚硬幣,盒子是空的.在每一回合中,她可以將一枚硬幣從盒移到盒,或者從盒移走枚硬幣,其中盒中當(dāng)前的硬幣數(shù).當(dāng)盒空時(shí)她獲勝.則小姜可以獲勝的最少回合是( )

A.三回合B.四回合C.五回合D.六回合

查看答案和解析>>

同步練習(xí)冊(cè)答案