【題目】某公司有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤為萬元(),剩下的員工平均每人每年創(chuàng)造的利潤可以提高

1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則調(diào)整員工從事第三產(chǎn)業(yè)的人數(shù)應(yīng)在什么范圍?

2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,求的取值范圍.

【答案】1;(2.

【解析】

1)利用剩余員工創(chuàng)造的年總利潤大于等于原來的年總利潤可構(gòu)造不等式求得結(jié)果;

(2)根據(jù)題意得到,分離變量可知,根據(jù)對(duì)號(hào)函數(shù)單調(diào)性可求得的最小值,由此得到結(jié)果.

1)由題意得:

,又;

2)從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤為萬元,從事原來產(chǎn)業(yè)的員工的年總利潤為萬元,則,

,即恒成立,

函數(shù)上是減函數(shù),

函數(shù)的最小值為,.

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的橢圓 )的左右焦點(diǎn)分別為、 為橢圓上的任意一點(diǎn),且, 成等差數(shù)列.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線 交橢圓于 兩點(diǎn),若點(diǎn)始終在以為直徑的圓外,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】、四位貴賓,應(yīng)分別對(duì)應(yīng)坐在、、四個(gè)席位上,現(xiàn)在這四人均未留意,在四個(gè)席位上隨便就座.

1)求這四人恰好都坐在自己席位上的概率;

2)求這四人恰好都沒坐在自己席位上的概率;

3)求這四人恰好有位坐在自己席位上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面是追蹤調(diào)查200個(gè)某種電子元件壽命(單位:)頻率分布直方圖,如圖:

其中300-400、400-500兩組數(shù)據(jù)丟失,下面四個(gè)說法中有且只有一個(gè)與原數(shù)據(jù)相符,這個(gè)說法是( )

①壽命在300-400的頻數(shù)是90;

②壽命在400-500的矩形的面積是0.2;

③用頻率分布直方圖估計(jì)電子元件的平均壽命為:

④壽命超過的頻率為0.3

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省級(jí)示范高中高三年級(jí)對(duì)考試的評(píng)價(jià)指標(biāo)中,有難度系數(shù)”“區(qū)分度綜合三個(gè)指標(biāo),其中,難度系數(shù),區(qū)分度,綜合指標(biāo).以下是高三年級(jí) 6 次考試的統(tǒng)計(jì)數(shù)據(jù):

i

1

2

3

4

5

6

難度系數(shù) xi

0.66

0.72

0.73

0.77

0.78

0.84

區(qū)分度 yi

0.19

0.24

0.23

0.23

0.21

0.16

(I) 計(jì)算相關(guān)系數(shù),若,則認(rèn)為的相關(guān)性強(qiáng);通過計(jì)算相關(guān)系數(shù) ,能否認(rèn)為的相關(guān)性很強(qiáng)(結(jié)果保留兩位小數(shù))?

(II) 根據(jù)經(jīng)驗(yàn),當(dāng)時(shí),區(qū)分度與難度系數(shù)的相關(guān)性較強(qiáng),從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即

(i) 寫出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));

(ii) 假設(shè)當(dāng)時(shí), 的關(guān)系依從(i)中的回歸方程,當(dāng) 為何值時(shí),綜合指標(biāo)的值最大?

參考數(shù)據(jù):

參考公式:

相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對(duì)倉儲(chǔ)物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動(dòng)向,中國物流與采購聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲(chǔ)指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲(chǔ)指數(shù)走勢(shì)情況.

根據(jù)該折線圖,下列結(jié)論正確的是

A. 2016年各月的倉儲(chǔ)指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲(chǔ)指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲(chǔ)指數(shù)比2016年同期波動(dòng)性更大

D. 2017年11月的倉儲(chǔ)指數(shù)較上月有所回落,顯示出倉儲(chǔ)業(yè)務(wù)活動(dòng)仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖①是棱長為1的小正方體,圖②,③是由這樣的小正方體擺放而成.按照這樣的方法繼續(xù)擺放,由上而下分別將第1層,第2層,…,第層的小正方體的個(gè)數(shù)記為,解答下列問題:

(1)按照要求填表:

1

2

3

4

1

3

6

_

(2)__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系曲線的極坐標(biāo)方程為.

)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

直線與曲線分別交于第一象限內(nèi)的,兩點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案