已知函數(shù)f(x)=m2-2cosx•m-sin2x在cosx=-1時取得最大值,在cosx=m時取得最小值,則實數(shù)m的取值范圍為(  )
A、m≤-1B、m≥1
C、0≤m≤1D、-1≤m≤0
考點:三角函數(shù)中的恒等變換應用
專題:三角函數(shù)的圖像與性質
分析:將f(x)轉化為關于cosx的二次函數(shù),再配方,結合題意,利用二次函數(shù)的性質即可求得實數(shù)m的取值范圍.
解答: 解:∵f(x)=cos2x-2cosx•m+m2-1=(cosx-m)2-1,在cosx=-1時取得最大值,在cosx=m時取得最小值,
∴0≤m≤1,
故選:C.
點評:本題考查同角三角函數(shù)關系式的應用,考查二次函數(shù)與余弦函數(shù)的性質,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知過曲線C上任意一點P作直線x=-2p(p>0)的垂線,垂足為M,且OP⊥OM.
(1)求曲線C的方程;
(2)設A、B是曲線C兩個不同點,直線OA和OB的傾斜角分別為α和β,當α,β變化且α+β為定值θ(0<θ<π)時,證明直線AB恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若二面角M-l-N的平面角大小為
2
3
π,直線m⊥平面M,則平面N內的直線與m所成角的取值范圍是(  )
A、[
π
6
π
2
]
B、[
π
4
π
2
]
C、[
π
3
π
2
]
D、[0,
π
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax-
1
a
的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知從A口袋中摸出一個球是紅球的概率為
1
3
,從B口袋中摸出一個球是紅球的概率為
2
5
.現(xiàn)從兩個口袋中各摸出一個球,那么這兩個球中沒有紅球的概率是(  )
A、
2
15
B、
2
5
C、
7
15
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內接于圓O,點E在CB的延長線上,AE切圓于O于點A,若AB∥CD,AD=4
3
,BE=2
3
,則AE等于( 。
A、36
B、6
C、24
D、2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=2x2-1在區(qū)間[a,b]上有最小值-1,則下面關系一定成立的是( 。
A、a≤0<b或a<0≤b
B、a<0<b
C、a<b<0或a<0<b
D、0<a<b或a<b<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

試證明函數(shù)f(x)=x2+1在(-∞,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系下,設圓C:ρ=2cosθ-4sinθ,試求:
(1)圓心的直角坐標表示;
(2)在直角坐標系中,設曲線C經過變換μ:
x′=2x-2
y′=3y+6
得到曲線C′,則曲線C′的軌跡是什么圖形?

查看答案和解析>>

同步練習冊答案