19.不等式組$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面區(qū)域為Ω,若直線ax-y+a+1=0與Ω有公共點,則實數(shù)a的取值范圍是[$\frac{1}{5}$,+∞).

分析 畫出滿足條件的平面區(qū)域,求出角點的坐標(biāo),通過討論a的范圍,結(jié)合圖象求出a的范圍即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由ax-y+a+1=0,得:y-1=a(x+1),
故直線恒過(-1,1),
由圖象得:直線AB的斜率是$\frac{2-1}{4-(-1)}$=$\frac{1}{5}$,
故答案為:[$\frac{1}{5}$,+∞).

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}的通項公式為an=($\frac{1}{2}$)3-n,求證:數(shù)列{an}是等比數(shù)列,并求首項和公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an},滿足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,則a2016=( 。
A.-1B.2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}中,a1=a(a∈R),an+1=$\frac{2{a}_{n}^{2}}{4{a}_{n}-1}$(n∈N*
(Ⅰ)若對任意的n∈N*,都有an+1>$\frac{1}{2}$,求實數(shù)a的取值范圍;
(Ⅱ)記數(shù)列{an}的前n項和是Sn,若a=1,求證:Sn<$\frac{{n}^{2}}{4}$+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.實數(shù)x,y滿足x2-2xy+2y2=2,則x2+2y2的最小值為4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過拋物線y2=4x的焦點F作斜率為1的直線,交拋物線于A、B兩點,若$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(λ>1),則λ等于( 。
A.$\sqrt{2}$+1B.$\sqrt{3}$+1C.$\sqrt{5}$+1D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U=R,集合A={-l,0,l,2},B={y|y=2x},圖中陰影部分所表示的集合為(  )
A.{-1,0}B.{l,2}C.{-l}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,a1=3,且對任意的正整數(shù)n,都有Sn+1=λSn+3n+1,其中常數(shù)λ>0.設(shè)bn=$\frac{a_n}{3^n}$(n∈N*)﹒
(1)若λ=3,求數(shù)列{bn}的通項公式;
(2)若λ≠1且λ≠3,設(shè)cn=an+$\frac{2}{λ-3}×{3^n}$(n∈N*),證明數(shù)列{cn}是等比數(shù)列;
(3)若對任意的正整數(shù)n,都有bn≤3,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則f($\frac{2π}{3}$)=(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案