精英家教網 > 高中數學 > 題目詳情
在平面上“等邊三角形內任意一點到三邊的距離之和為定值”,類比猜想在空間中有   
【答案】分析:由平面中關于點到線的距離的性質,根據平面上關于線的性質類比為空間中關于面的性質,即可得到結論.
解答:解:由平面中關于點到線的距離的性質,根據平面上關于線的性質類比為空間中關于面的性質,我們可以推斷在空間幾何中有:正四面體內任意一點到四個面的距離之和為定值
故答案為:正四面體內任意一點到四個面的距離之和為定值.
點評:由平面圖形的性質向空間物體的性質進行類比時,常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面上“等邊三角形內任意一點到三邊的距離之和為定值”,類比猜想在空間中有
正四面體內任意一點到四個面的距離之和為定值
正四面體內任意一點到四個面的距離之和為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當BM+MN+NB取得最小值時,證明:CD∥平面BMN

查看答案和解析>>

科目:高中數學 來源: 題型:

在復平面上,的頂點分別于復數對應,則三角形的形狀是(    ).

    A.等腰三角形    B.等邊三角形        C.等腰直角三角形       D.非等腰三角形

查看答案和解析>>

科目:高中數學 來源:2006-2007學年廣東省廣州89中學高一(上)期末數學復習試卷(必修1、2)(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當BM+MN+NB取得最小值時,證明:CD∥平面BMN

查看答案和解析>>

同步練習冊答案