【題目】已知橢圓,焦距為2,離心率.

求橢圓的標(biāo)準(zhǔn)方程

過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,直線軸交于點(diǎn),過(guò)點(diǎn)的直線交橢圓兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,的面積的最大值.

【答案】(1) (2) 面積的最大值為3

【解析】試題分析:(Ⅰ)由橢圓的焦點(diǎn)為,離心率,求出,由此能求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)由題意,得 、 四點(diǎn)共圓,該圓的方程為,得的方程為,直線的方程為,設(shè),則,從而最大, 就最大,可設(shè)直線的方程為,由,得,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式,能求出的面積的最大值.

試題解析(Ⅰ)由題意, ,解得,由,解得;

所以橢圓的標(biāo)準(zhǔn)方程為.

(Ⅱ)由題意,得四點(diǎn)共圓,該圓的方程為,

又圓的方程為,故直線的方程為,

,得,即點(diǎn)的坐標(biāo)為,則點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.

設(shè),則,因此最大, 就最大,

由題意直線的斜率不為零,可設(shè)直線的方程為,

,

所以,

又直線與橢圓交于不同的兩點(diǎn),則,即,

,

,則,

,則函數(shù)上單調(diào)遞增,

即當(dāng)時(shí), 上單調(diào)遞增,因此有

所以,當(dāng)時(shí)取等號(hào).

面積的最大值為3.

【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓的方程、韋達(dá)定理和三角形面積公式及單調(diào)性求最值,屬于難題. 解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、以及均值不等式法,本題(2)就是用的這種思路,利用函數(shù)單調(diào)法面積的最大值的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為2的菱形, , 為平面外一點(diǎn),且底面上的射影為四邊形的中心, , 上一點(diǎn),

(Ⅰ)若上一點(diǎn),且,求證: 平面;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為, 為過(guò)定點(diǎn)的兩條直線.

(1)若與拋物線均無(wú)交點(diǎn),且,求直線的斜率的取值范圍;

(2)若與拋物線交于兩個(gè)不同的點(diǎn),以為直徑的圓過(guò)點(diǎn),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,其左頂點(diǎn)A在圓O:x2+y2=16上. (Ⅰ)求橢圓W的方程;
(Ⅱ)若點(diǎn)P為橢圓W上不同于點(diǎn)A的點(diǎn),直線AP與圓O的另一個(gè)交點(diǎn)為Q.是否存在點(diǎn)P,使得 ?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,,且平面平面

(1)求證:;

(2)在線段上是否存在一點(diǎn),使二面角的大小為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合{x|cos(πcosx)=0,x∈[0,π]}=(用列舉法表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列P0 , P1 , P2 , P3 , …,Pn1 , Pn , 設(shè)點(diǎn)Pk的坐標(biāo)(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,記△xk=xk﹣xk1 , △yk=yk﹣yk1 , 且滿足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知點(diǎn)P0(0,1),點(diǎn)P1滿足△y1>△x1>0,求P1的坐標(biāo);
(2)已知點(diǎn)P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是遞增數(shù)列,點(diǎn)Pn在直線l:y=3x﹣8上,求n;
(3)若點(diǎn)P0的坐標(biāo)為(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.函數(shù)fx=ex+x2+x+1gx)的圖象關(guān)于直線2x﹣y﹣3=0對(duì)稱,PQ分別是函數(shù)fx),gx)圖象上的動(dòng)點(diǎn),則|PQ|的最小值為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 軸垂直,且.

(1)求橢圓方程;

(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案