【題目】如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求直線DQ與面PQC成角的正弦值
【答案】(1)見解析 (2)
【解析】
根據(jù)題意得以D為坐標(biāo)原點(diǎn),線段DA的長為單位長,射線DA,DP,DC分別為x,y,z軸建立空間直角坐標(biāo)系D﹣xyz;(1)根據(jù)坐標(biāo)系,求出的坐標(biāo),由向量積的運(yùn)算易得=0, =0;進(jìn)而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得證明;(2)先求平面的PQC的法向量,再求出cos<,>,直線DQ與面PQC成角的正弦值等于cos<,>即可.
如圖,以D為坐標(biāo)原點(diǎn),線段DA的長為單位長,射線DA,DP,DC分別為x,y,z軸建立空間直角坐標(biāo)系D﹣xyz;
(1)依題意有Q(1,1,0),C(0,0,1),P(0,2,0),D(0,0,0);
則=(1,1,0),=(0,0,1),=(1,﹣1,0),
所以=0,=0;即PQ⊥DQ,PQ⊥DC,故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(2)依題意,=(1,﹣1,0),
設(shè)=(x,y,z)是平面的PQC法向量,
則 即 ,可取=(1,1,2);
=(1,1,0),所以cos<,>=
設(shè)直線DQ與面PQC所成的角為 ,
sin =cos<,>=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】21世紀(jì)城的街道都是東西向和南北向,為了加強(qiáng)安全管理,在一些十字路口設(shè)置保安亭(任何兩個保安亭都不在同一街道上),以兩個保安亭為其兩個頂點(diǎn)、街道為邊圍成的矩形稱為一個安全區(qū),安全區(qū)(包括邊界)內(nèi)保安亭的個數(shù)稱為該安全區(qū)的安全強(qiáng)度.如果世紀(jì)城兩個方向的街道都至少有條,且任何兩條不平行的街道都交成一個十字路口,今按要求選定個十字路口設(shè)置保安亭,求安全強(qiáng)度最大的安全區(qū)的安全強(qiáng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動時,線段的中點(diǎn)形成軌跡.
(1)求軌跡的方程;
(2)若直線與曲線交于兩點(diǎn),為曲線上一動點(diǎn),求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十八大將生態(tài)文明建設(shè)納入中國特色社會主義事業(yè)“五位一體”總體布局,“美麗中國”成為中華民族追求的新目標(biāo).十九大報告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語,正在走入百姓生活,城市出行的新變革正在悄然發(fā)生,綠色出行的理念已深入人心,建設(shè)美麗中國,綠色出行至關(guān)重要,騎自行車或步行漸漸成為市民的一種出行習(xí)慣.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:
次數(shù) 年齡 | ||||||
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.
(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎勵,求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間的概率;
(2)用樣本估計(jì)總體的思想,解決如下問題:
①估計(jì)該市在32歲至44歲年齡段的一個青年人每月騎車的平均次數(shù);
②若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),統(tǒng)計(jì)并完成下表,說明能否在犯錯誤的概率不超過0.001的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?
青年人 | 非青年人 | 合計(jì) | |
騎行愛好者 | |||
非騎行愛好者 | |||
合計(jì) |
0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參數(shù)數(shù)據(jù):
(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為和,過點(diǎn)的直線與橢圓交于軸上方的,兩點(diǎn),且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)(。┣笾本的斜率;
(ⅱ)設(shè)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn)在的外接圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的一條切線過點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)若,.
①討論函數(shù)的單調(diào)性;
②當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場在2018年國慶舉辦了一次抽獎活動抽獎箱里放有3個紅球,3個黑球和1個白球這些小球除顏色外大小形狀完全相同,從中隨機(jī)一次性取3個小球,每位顧客每次抽完獎后將球放回抽獎箱活動另附說明如下:
凡購物滿含元者,憑購物打印憑條可獲得一次抽獎機(jī)會;
凡購物滿含元者,憑購物打印憑條可獲得兩次抽獎機(jī)會;
若取得的3個小球只有1種顏色,則該顧客中得一等獎,獎金是一個10元的紅包;
若取得的3個小球有3種顏色,則該顧客中得二等獎,獎金是一個5元的紅包;
若取得的3個小球只有2種顏色,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費(fèi)數(shù)據(jù)單位:元,繪制得到如圖所示的莖葉圖.
求這20位顧客中獲得抽獎機(jī)會的顧客的購物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)結(jié)果精確到整數(shù)部分;
記一次抽獎獲得的紅包獎金數(shù)單位:元為X,求X的分布列及數(shù)學(xué)期望,并計(jì)算這20位顧客在抽獎中獲得紅包的總獎金數(shù)的平均值假定每位獲得抽獎機(jī)會的顧客都會去抽獎.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京市政府為做好會議接待服務(wù)工作,對可能遭受污染的某海產(chǎn)品在進(jìn)入餐飲區(qū)前必須進(jìn)行兩輪檢測,只有兩輪都合格才能進(jìn)行銷售,否則不能銷售.已知該海產(chǎn)品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響.
(1)求該海產(chǎn)品不能銷售的概率;
(2)如果該海產(chǎn)品可以銷售,則每件產(chǎn)品可獲利40元;如果該海產(chǎn)品不能銷售,則每件產(chǎn)品虧損80元(即獲利—80元).已知一箱中有該海產(chǎn)品4件,記一箱該海產(chǎn)品獲利元,求的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com