如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(Ⅰ)求證:CD⊥平面ABD;
(Ⅱ)若AB=BD=CD=1,M為AD中點(diǎn),求三棱錐A-MBC的體積.
考點(diǎn):直線與平面垂直的判定,棱柱、棱錐、棱臺的體積
專題:綜合題,空間位置關(guān)系與距離
分析:(Ⅰ)證明:CD⊥平面ABD,只需證明AB⊥CD;
(Ⅱ)利用轉(zhuǎn)換底面,VA-MBC=VC-ABM=
1
3
S△ABM•CD,即可求出三棱錐A-MBC的體積.
解答: (Ⅰ)證明:∵AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD,
∵CD⊥BD,AB∩BD=B,
∴CD⊥平面ABD;
(Ⅱ)解:∵AB⊥平面BCD,BD?平面BCD,
∴AB⊥BD.
∵AB=BD=1,
∴S△ABD=
1
2
,
∵M(jìn)為AD中點(diǎn),
∴S△ABM=
1
2
S△ABD=
1
4
,
∵CD⊥平面ABD,
∴VA-MBC=VC-ABM=
1
3
S△ABM•CD=
1
12
點(diǎn)評:本題考查線面垂直,考查三棱錐A-MBC的體積,正確運(yùn)用線面垂直的判定定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x
x-1
-kx2,x≤0
lnx,x>0
有且只有2個不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(-4,0)
B、(-∞,0]
C、(-4,0]
D、(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意給定的實(shí)數(shù)m,直線3x+y-m=0與雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)最多有一個交點(diǎn),則雙曲線的離心率等于( 。
A、
10
3
B、
10
C、3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,a3均為正數(shù),λ1<λ2<λ3,則函數(shù)f(x)=
a1
x-λ1
+
a2
x-λ2
+
a3
x-λ3
的兩個零點(diǎn)分別位于區(qū)間( 。
A、(-∞,λ1)∪(λ1,λ2)內(nèi)
B、(λ1,λ2)∪(λ2,λ3)內(nèi)
C、(λ2,λ3)∪(λ3,+∞)內(nèi)
D、(-∞,λ1)∪(λ3,+∞)內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)AP=1,AD=
3
,三棱錐P-ABD的體積V=
3
4
,求A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為-1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時,x2<ex;
(3)證明:對任意給定的正數(shù)c,總存在x0,使得當(dāng)x∈(x0,+∞)時,恒有x<cex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2+ax+1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a<0時,試討論是否存在x0∈(0,
1
2
)∪(
1
2
,1),使得f(x0)=f(
1
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)對序列P:(a1,b1),(a2,b2),…,(an,bn),記T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak兩個數(shù)中最大的數(shù),
(Ⅰ)對于數(shù)對序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(Ⅱ)記m為a,b,c,d四個數(shù)中最小的數(shù),對于由兩個數(shù)對(a,b),(c,d)組成的數(shù)對序列P:(a,b),(c,d)和P′:(c,d),(a,b),試分別對m=a和m=d兩種情況比較T2(P)和T2(P′)的大小;
(Ⅲ)在由五個數(shù)對(11,8),(5,2),(16,11),(11,11),(4,6)組成的所有數(shù)對序列中,寫出一個數(shù)對序列P使T5(P)最小,并寫出T5(P)的值(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,BC=6,以BC為直徑的半圓分別交AB、AC于點(diǎn)E、F,若AC=2AE,則EF=
 

查看答案和解析>>

同步練習(xí)冊答案