(2008•湖北模擬)已知平面向量
a
、
b
、
c
滿足|
a
|=1,|
b
|=2,|
c
|=4
,且向量
a
、
b
c
兩兩所成的角相等,則|
a
+
b
+
c
|
=( 。
分析:由于本題中未給出向量的坐標(biāo),故求|
a
+
b
+
c
|
時,根據(jù)向量數(shù)量的數(shù)量積計算公式,求出向量模的平方,即向量
a
+
b
+
c
的平方,再開方求解.
解答:解:由向量
a
、
b
、
c
兩兩所成的角相等,設(shè)向量所成的角為α,由題意可知α=0°或α=120°
(|
a
+
b
+
c
|) 
2
=|
a
|
2
+|
b
|
2
+|
c
|
2
+2(
a
b
+
a
c
+
b
c
)=21+2(|
a
|•|
b
|cosα+|
a
|•|
c
|cosα+|
b
|•|
c
|cosα)=21+28cosα
所以當(dāng)α=0°時,原式=49;
當(dāng)α=120°時,原式=7
所以所求的模為7或
7

故選D
點評:若未知向量的坐標(biāo),只是已知條件中有向量的模及夾角,則求向量的模時,主要是根據(jù)向量數(shù)量的數(shù)量積計算公式,求出向量模的平方,即向量的平方,再開方求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)若等比數(shù)列的各項均為正數(shù),前n項之和為S,前n項之積為P,前n項倒數(shù)之和為M,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知f(x)=ax3+bx2+cx+d為奇函數(shù),且在點(2,f(2))處的切線方程為9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的圖象與x軸僅有一個公共點,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價為10元,固定成本為8元.今年,工廠第一次投入100萬元(科技成本),并計劃以后每年比上一年多投入100萬元(科技成本),預(yù)計產(chǎn)量年遞增10萬只,第n次投入后,每只產(chǎn)品的固定成本為g(n)=
k
n+1
(k>0,k為常數(shù),n∈Z且n≥0),若產(chǎn)品銷售價保持不變,第n次投入后的年利潤為f(n)萬元.
(1)求k的值,并求出f(n)的表達(dá)式;
(2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,則實數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知向量
a
=(2cosx,tan(x+α))
,
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
,
π
2
))
的終邊上一點P(-t,-t)(t≠0),記f(x)=
a
b

(1)求函數(shù)f(x)的最大值,最小正周期;
(2)作出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊答案