(2013•茂名一模)已知橢圓C1
x2
a2
+
y2
b2
=1   (a>b>0)
過(guò)點(diǎn)A(0,
2
)
且它的離心率為
3
3

(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過(guò)點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(3)已知?jiǎng)又本l過(guò)點(diǎn)Q(4,0),交軌跡C2于R、S兩點(diǎn).是否存在垂直于x軸的直線m被以RQ為直徑的圓O1所截得的弦長(zhǎng)恒為定值?如果存在,求出m的方程;如果不存在,說(shuō)明理由.
分析:(1)根據(jù)橢圓所過(guò)點(diǎn)A可求得b值,再由離心率及a2=b2+c2即可求得a值,
(2)由題意可知|MP|=|MF2|,即動(dòng)點(diǎn)M到定直線l1:x=-1的距離等于它到定點(diǎn)F2(1,0)的距離,從而可判斷動(dòng)點(diǎn)M的軌跡為拋物線,進(jìn)而可求得其方程;
(3)設(shè)R(x1,y1),假設(shè)存在直線m:x=t滿足題意,可表示出圓O1的方程,過(guò)O1作直線x=t的垂線,垂足為E,設(shè)直線m與圓O1的一個(gè)交點(diǎn)為G.利用勾股定理可用t,x1表示出|EG|2,根據(jù)表達(dá)式可求得t值滿足條件.
解答:解:(1)因?yàn)闄E圓C1
x2
a2
+
y2
b2
=1
(a>b>0)過(guò)點(diǎn)A(0,
2
)
,所以b=
2
,b2=2,
又因?yàn)闄E圓C1的離心率e=
3
3
,所以e2=
c2
a2
=
a2-b2
a2
=
1
3
,解得a2=3.
所以橢圓C1的方程是
x2
3
+
y2
2
=1
;
(2)因?yàn)榫段PF2的垂直平分線交l2于點(diǎn)M,
所以|MP|=|MF2|,即動(dòng)點(diǎn)M到定直線l1:x=-1的距離等于它到定點(diǎn)F2(1,0)的距離,
所以動(dòng)點(diǎn)M的軌跡C2是以l1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,
所以點(diǎn)M的軌跡C2的方程為y2=4x;
(3)設(shè)R(x1,y1),假設(shè)存在直線m:x=t滿足題意,則圓心O1(
x1+4
2
,
y1
2
)
,
過(guò)O1作直線x=t的垂線,垂足為E,設(shè)直線m與圓O1的一個(gè)交點(diǎn)為G.
可得:|EG|2=|O1G|2-|O1E|2=|O1Q|2-|O1E|2
|EG|2=|O1Q|2-|O1E|2=
(x1-4)2+
y
2
1
4
-(
x1+4
2
-t)2

=
1
4
y
2
1
+
(x1-4)2-(x1+4)2
4
+t(x1+4)-t2

=x1-4x1+t(x1+4)-t2=(t-3)x1+4t-t2,
當(dāng)t=3時(shí),|EG|2=3,此時(shí)直線m被以RQ為直徑的圓O1所截得的弦長(zhǎng)恒為定值2
3

因此存在直線m:x=3滿足題意.
點(diǎn)評(píng):本題考查直線與圓錐曲線的位置關(guān)系、橢圓方程的求解,考查學(xué)生對(duì)問(wèn)題的探究能力解決問(wèn)題的能力,(2)問(wèn)的解決基礎(chǔ)是掌握拋物線的定義,(3)問(wèn)探究問(wèn)題的處理方法往往是先假設(shè)存在,然后由條件進(jìn)行推導(dǎo),如滿足條件即存在,否則不然.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)氣象臺(tái)預(yù)報(bào)“茂名市明天降雨的概率是80%”,下列理解正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)已知等比數(shù)列{an}的公比q為正數(shù),且a3a9=2
a
2
5
,則q=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)已知函數(shù)f(x)=
tan
π
3
x,x<2010
x-2010,x>2010
,則f[f(2013)]=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)如圖所示,角A為鈍角,且cosA=-
4
5
,點(diǎn)P,Q分別在角A的兩邊上.
(1)已知AP=5,AQ=2,求PQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=
12
13
,求sin(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)已知函數(shù)g(x)=
13
ax3+2x2-2x
,函數(shù)f(x)是函數(shù)g(x)的導(dǎo)函數(shù).
(1)若a=1,求g(x)的單調(diào)減區(qū)間;
(2)當(dāng)a∈(0,+∞)時(shí),若存在一個(gè)與a有關(guān)的負(fù)數(shù)M,使得對(duì)任意x∈[M,0]時(shí),-4≤f(x)≤4恒成立,求M的最小值及相應(yīng)的a值.

查看答案和解析>>

同步練習(xí)冊(cè)答案