如果直線交于M、N兩點(diǎn),且M、N關(guān)于直線對(duì)稱,則不等式組表示的平面區(qū)域的面積是         。

 

【答案】

1/4

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為3+2
2
,3-2
2

(1)求橢圓的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線BD的交點(diǎn)K必在一條確定的雙曲線上;
(3)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MQ
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:走向清華北大同步導(dǎo)讀·高二數(shù)學(xué)(上) 題型:044

已知橢圓E的一個(gè)焦點(diǎn)是(0,-),對(duì)應(yīng)準(zhǔn)線是y=-,并且的等比中項(xiàng)是離心率e.

(1)求橢圓E的方程;

(2)如果一條直線l與橢圓E交于M、N兩個(gè)不同點(diǎn),使得線段MN恰好被直線x=-平分,試求直線l的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為數(shù)學(xué)公式數(shù)學(xué)公式
(1)求橢圓的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線BD的交點(diǎn)K必在一條確定的雙曲線上;
(3)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若數(shù)學(xué)公式數(shù)學(xué)公式,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省七市州高三(下)4月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為,
(1)求橢圓的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線BD的交點(diǎn)K必在一條確定的雙曲線上;
(3)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若,,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省七市州高三(下)4月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為,
(1)求橢圓的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線BD的交點(diǎn)K必在一條確定的雙曲線上;
(3)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若,證明:λ+μ為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案