18.已知函數(shù)f(x)=2x2-mx+3在(-2,+∞)上單調(diào)遞增,在(-∞,-2]上單調(diào)遞減,則f(1)=13.

分析 利用二次函數(shù)的對稱軸方程,即可求出實數(shù)m的值;利用二次函數(shù)的解析式求出函數(shù)f(1)的值;

解答 解:∵f(x)在(-2,+∞)上單調(diào)遞增,在(-∞,-2]上單調(diào)遞減,
∴函數(shù)f(x)=2x2-mx+3對稱軸為x=$\frac{m}{4}$=-2,
∴m=-8,
∴f(x)=2x2+8x+3.
∴f(1)=13,
故答案為:13.

點評 本題考查二次函數(shù)的基本性質(zhì),函數(shù)的對稱軸方程以及函數(shù)的值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$-\frac{3}{4}$π<α<$-\frac{1}{2}π$,則sin α,cos α,tan α的大小關(guān)系是sinα<cosα<tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=loga(x+b),g(x)=kx(k∈R且k≠0),若y=f(x)在點(1,f(1))處的切線方程為x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象無公共點,試求實數(shù)k的取值范圍;
(Ⅲ)若存在兩個實數(shù)x1、x2且x1≠x2,滿足f(x1)=g(x1),f(x2)=g(x2),求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=asin2x-cos2x+sin2x過點($\frac{π}{6}$,1).
(1)求a的值,并寫出f(x)的單調(diào)遞增區(qū)間;
(2)若α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),f($\frac{α+β}{2}$+$\frac{π}{3}$)=$\frac{6}{5}$,f(β+$\frac{π}{3}$)=$\frac{8}{5}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常數(shù)a∈R.
(Ⅰ)討論g(x)的單調(diào)性;
(Ⅱ)當(dāng)a>0時,若f(x)有兩個零點x1,x2(x1<x2),求證:在區(qū)間(1,+∞)上存在f(x)的極值點x0,使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}為等差數(shù)列,且a2+a3+a10+a11=48,則a6+a7=( 。
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.平面α內(nèi)有一以AB為直徑的圓,PA⊥α,點C在圓周上移動(不與A,B重合),點D,E分別是A在PC,PB上的射影,則( 。
A.∠ACD是二面角A-PC-B的平面角B.∠AED是二面角A-PB-C的平面角
C.∠EDA是二面角A-PC-B的平面角D.∠DAE是二面角B-PA-C的平面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.實數(shù)$x,y滿足\left\{{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}}\right.$,則目標(biāo)函數(shù)z=x+y-3的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若方程f(x)-x=0有且只有一個根,則函數(shù)f(x)不可能是( 。
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=($\frac{1}{2}$)xD.f(x)=x2+$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案