1.已知對于x∈R,g(x)≠0與f'(x)g(x)>f(x)g'(x)恒成立,且f(1)=0,則不等式$\frac{f(x)}{g(x)}>0$的解集是(1,+∞).

分析 令h(x)=$\frac{f(x)}{g(x)}$,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出不等式的解集即可.

解答 解:令h(x)=$\frac{f(x)}{g(x)}$,
則h′(x)=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$,
而g(x)≠0與f'(x)g(x)>f(x)g'(x)恒成立,
故h′(x)>0,
h(x)在R遞增,而h(1)=0,
故不等式$\frac{f(x)}{g(x)}>0$,即h(x)>h(1),
解得:x>1,
故不等式的解集是(1,+∞).

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若函數(shù)f(x)=ax-$\frac{x}$+c(a,b,c∈R)的圖象經(jīng)過點(1,0),且在x=2處的切線方程是y=-x+3.
(Ⅰ)確定f(x)的解析式;
(Ⅱ)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若$\overrightarrow{a}$=(2,3,m),$\overrightarrow$=(2n,6,8)且$\overrightarrow{a}$,$\overrightarrow$為共線向量,則m+n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知冪函數(shù)f(x)=x${\;}^{({m}^{2}+m)^{-1}}$(m∈N*)的圖象經(jīng)過點$({2,\sqrt{2}})$.
(1)試求m的值并寫出該冪函數(shù)的解析式;
(2)試求滿足f(1+a)>f(3-$\sqrt{a}}$)的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分條件,則實數(shù)m的取值范圍為( 。
A.[9,13]B.(3,9)C.[9,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{|x-1|}}&{x>0}\\{-{x}^{2}-2x+1}&{x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)+(a-1)f(x)=a有7個不等的實數(shù)根,則實數(shù)a的取值范圍是(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}y-x≤0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,則z=x-3y的最大值為( 。
A.4B.$\frac{3}{2}$C.$-\frac{8}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{x-1≥0}\end{array}\right.$,則目標(biāo)函數(shù)$z=\frac{y}{x+1}$的取值范圍是(  )
A.$(-∞,-\frac{1}{2}]∪[{0,\frac{3}{2}}]$B.$[{\frac{1}{4},\frac{3}{2}}]$C.$[{-\frac{1}{2},\frac{1}{4}}]$D.$[{-\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}-\sqrt{2}sinx,-1≤x≤0\\ tan({\frac{π}{4}x}),0<x≤1\end{array}\right.$,則$f({f({-\frac{π}{4}})})$=1.

查看答案和解析>>

同步練習(xí)冊答案