()(本小題滿分13分)
設(shè)橢圓過點(diǎn),且著焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交與兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足,證明:點(diǎn)總在某定直線上
(Ⅰ)
(Ⅱ)見解析
(1)由題意:
,解得,所求橢圓方程為
(2)方法一
設(shè)點(diǎn)Q、A、B的坐標(biāo)分別為。
由題設(shè)知均不為零,記,則且
又A,P,B,Q四點(diǎn)共線,從而
于是 ,
,
從而
,(1) ,(2)
又點(diǎn)A、B在橢圓C上,即
(1)+(2)×2并結(jié)合(3),(4)得
即點(diǎn)總在定直線上
方法二
設(shè)點(diǎn),由題設(shè),均不為零。
且
又 四點(diǎn)共線,可設(shè),于是
(1)
(2)
由于在橢圓C上,將(1),(2)分別代入C的方程整理得
(3)
(4)
(4)-(3) 得
即點(diǎn)總在定直線上
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省惠州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù)經(jīng)過點(diǎn).
(1)求的值;(2)求在[0,1]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三11月月考文科數(shù)學(xué) 題型:解答題
(本小題滿分13分,(Ⅰ)小問6分,(Ⅱ)小問7分. )
已知是首項(xiàng)為19,公差為-2的等差數(shù)列,為的前項(xiàng)和.
(Ⅰ)求通項(xiàng)及;
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三11月月考文科數(shù)學(xué) 題型:解答題
(本小題滿分13分,(Ⅰ)小問7分,(Ⅱ)小問6分.)
設(shè)函數(shù)
(1)求的最小正周期和值域;
(2)將函數(shù)的圖象按向量平移后得到函數(shù)的圖 象,求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省長(zhǎng)沙市2010-2011學(xué)年高三年級(jí)月考(一)數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)
已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12。
(1)求的解析式;
(2)是否存在自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省莆田市高三畢業(yè)班適應(yīng)性練習(xí)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
隨機(jī)變量X的分布列如下表如示,若數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則稱隨機(jī)變量X服從等比分布,記為Q(,).現(xiàn)隨機(jī)變量X∽Q(,2).
X |
1 |
2 |
… |
n |
… |
(Ⅰ)求n 的值并求隨機(jī)變量X的數(shù)學(xué)期望EX;
(Ⅱ)一個(gè)盒子里裝有標(biāo)號(hào)為1,2,…,n且質(zhì)地相同的標(biāo)簽若干張,從中任取1張標(biāo)簽所得的標(biāo)號(hào)為隨機(jī)變量X.現(xiàn)有放回的從中每次抽取一張,共抽取三次,求恰好2次取得標(biāo)簽的標(biāo)號(hào)不大于3的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com