()(本小題滿分13分)

設(shè)橢圓過(guò)點(diǎn),且著焦點(diǎn)為

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)過(guò)點(diǎn)的動(dòng)直線與橢圓相交與兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足,證明:點(diǎn)總在某定直線上

(Ⅰ)

(Ⅱ)見(jiàn)解析


解析:

 (1)由題意:

           ,解得,所求橢圓方程為

(2)方法一

 設(shè)點(diǎn)Q、A、B的坐標(biāo)分別為。

由題設(shè)知均不為零,記,則

又A,P,B,Q四點(diǎn)共線,從而

于是           ,     

               ,    

從而

       ,(1)   ,(2)

又點(diǎn)A、B在橢圓C上,即

                 

  (1)+(2)×2并結(jié)合(3),(4)得

即點(diǎn)總在定直線

方法二

設(shè)點(diǎn),由題設(shè),均不為零。

四點(diǎn)共線,可設(shè),于是

                             (1)

                             (2)

由于在橢圓C上,將(1),(2)分別代入C的方程整理得

      (3)

       (4)

(4)-(3)    得  

即點(diǎn)總在定直線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省惠州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù)經(jīng)過(guò)點(diǎn).

(1)求的值;(2)求在[0,1]上的最大值與最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三11月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分,(Ⅰ)小問(wèn)6分,(Ⅱ)小問(wèn)7分. )

已知是首項(xiàng)為19,公差為-2的等差數(shù)列,的前項(xiàng)和.

(Ⅰ)求通項(xiàng);

(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三11月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分,(Ⅰ)小問(wèn)7分,(Ⅱ)小問(wèn)6分.)

設(shè)函數(shù)  

(1)求的最小正周期和值域;

(2)將函數(shù)的圖象按向量平移后得到函數(shù)的圖                    象,求函數(shù)的單調(diào)區(qū)間。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省長(zhǎng)沙市2010-2011學(xué)年高三年級(jí)月考(一)數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)

       已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12。

   (1)求的解析式;

   (2)是否存在自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的取值范圍;若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省莆田市高三畢業(yè)班適應(yīng)性練習(xí)理科數(shù)學(xué) 題型:解答題

 

(本小題滿分13分)

隨機(jī)變量X的分布列如下表如示,若數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則稱(chēng)隨機(jī)變量X服從等比分布,記為Q(,).現(xiàn)隨機(jī)變量X∽Q(,2).

X

1

2

n

(Ⅰ)求n 的值并求隨機(jī)變量X的數(shù)學(xué)期望EX;

(Ⅱ)一個(gè)盒子里裝有標(biāo)號(hào)為1,2,…,n且質(zhì)地相同的標(biāo)簽若干張,從中任取1張標(biāo)簽所得的標(biāo)號(hào)為隨機(jī)變量X.現(xiàn)有放回的從中每次抽取一張,共抽取三次,求恰好2次取得標(biāo)簽的標(biāo)號(hào)不大于3的概率.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案