【題目】已知數(shù)列滿足,其中是數(shù)列的前項和.

1)若數(shù)列是首項為,公比為的等比數(shù)列,求數(shù)列的通項公式;

2)若,求數(shù)列的通項公式;

3)在(2)的條件下,設,求證:數(shù)列中的任意一項總可以表示成該數(shù)列其他兩項之積.

【答案】123)詳見解析

【解析】

試題(1)易知,則,代入可得數(shù)列的通項公式(2)由,則,可證為等差數(shù)列,則數(shù)列的通項公式可求(3)對于給定的,若存在,使得,

只需,由此能夠證明數(shù)列中的任意一項總可以表示成其他兩項之積.

試題解析:(1)因為,

所以

2)若,則,,

兩式相減得,即

時,

兩式相減得,即,

又由,,

所以數(shù)列是首項為2,公差為3-2=1的等差數(shù)列,

故數(shù)列的通項公式是

3)由(2)得

對于給定的,若存在,使得

只需,

,即,則

,則

對數(shù)列中的任意一項,都存在使得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】出版商為了解某科普書一個季度的銷售量(單位:千本)和利潤(單位:元/本)之間的關系,對近年來幾次調(diào)價之后的季銷售量進行統(tǒng)計分析,得到如下的10組數(shù)據(jù).

序號

1

2

3

4

5

6

7

8

9

10

2.4

3.1

4.6

5.3

6.4

7.1

7.8

8.8

9.5

10

18.1

14.1

9.1

7.1

4.8

3.8

3.2

2.3

2.1

1.4

根據(jù)上述數(shù)據(jù)畫出如圖所示的散點圖:

1)根據(jù)圖中所示的散點圖判斷哪個更適宜作為銷售量關于利潤的回歸方程類型?(給出判斷即可,不需要說明理由)

2)根據(jù)(1)中的判斷結果及參考數(shù)據(jù),求出關于的回歸方程;

3)根據(jù)回歸方程設該科普書一個季度的利潤總額為(單位:千元),當季銷售量為何值時,該書一個季度的利潤總額預報值最大?(季利潤總額=季銷售量×每本書的利潤)

參考公式及參考數(shù)據(jù):

①對于一組數(shù)據(jù),其回歸直線的斜率和截距的公式分別為.

②參考數(shù)據(jù):

6.50

6.60

1.75

82.50

2.70

表中.另:.計算時,所有的小數(shù)都精確到0.01.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某兩名高三學生連續(xù)9次數(shù)學測試的成績(單位:分)進行統(tǒng)計得到如下折線圖.下列有關這兩名學生數(shù)學成績的分析中,正確的結論是(

A.甲同學的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?/span>130

B.根據(jù)甲同學成績折線圖中的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間內(nèi)

C.乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關

D.乙同學在這連續(xù)九次測驗中的最高分與最低分的差超過40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中為真命題的是(  )

A.命題“若,則”的否命題

B.命題“若xy,則x|y|”的逆命題

C.命題“若x1,則”的否命題

D.命題“已知,若,則ab”的逆命題、否命題、逆否命題均為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:上,上,對角線點,且矩形的面積小于150平方米.

(1)設長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;

(2)當的長度是多少時,矩形的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,橢圓的右焦點為

,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓兩點.

求橢圓的標準方程;

時,,求實數(shù)

試問的值是否與的大小無關,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:指數(shù)函數(shù)R上是單調(diào)減函數(shù);命題q:關于x的方程有實根,

1)若p為真,求a的范圍

2)若q為真,求的范圍

3)若pq為真,pq為假,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照下列要求,分別求有多少種不同的方法?

15個不同的小球放入3個不同的盒子;

25個不同的小球放入3個不同的盒子,每個盒子至少一個小球;

35個相同的小球放入3個不同的盒子,每個盒子至少一個小球;

45個不同的小球放入3個不同的盒子,恰有1個空盒.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的右焦點為,左、右頂點分別為,上、下頂點分別為,連結并延長交橢圓于點,連結,記橢圓的離心率為.

1)若,.

①求橢圓的標準方程;

②求的面積之比.

2)若直線和直線的斜率之積為,求的值.

查看答案和解析>>

同步練習冊答案