A. | $\frac{2017}{2018}$ | B. | $\frac{2016}{2017}$ | C. | $\frac{2018}{1009}$ | D. | $\frac{2017}{1009}$ |
分析 令m=1,可得an+1-an=n+1,再利用累加法可求得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+3+2+1=$\frac{(n+1)n}{2}$,再利用裂項(xiàng)法得到$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),從而可求得$\sum_{i=1}^{2017}$$\frac{1}{{a}_{i}}$的值.
解答 解:∵a1=1,且對(duì)任意的m,n∈N*,都有am+n=am+an+mn,
∴令m=1,則an+1=a1+an+n=an+n+1,
即an+1-an=n+1,
∴an-an-1=n(n≥2),
…,
a2-a1=2,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+3+2+1=$\frac{(n+1)n}{2}$,
∴$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴$\sum_{i=1}^{2017}$$\frac{1}{{a}_{i}}$=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{2016}$-$\frac{1}{2017}$)+($\frac{1}{2017}$-$\frac{1}{2018}$)]=2(1-$\frac{1}{2018}$)=$\frac{2017}{1009}$,
故選:D.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,利用累加法求得an=$\frac{(n+1)n}{2}$是關(guān)鍵,考查推理運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{i}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{i}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 11 | B. | 13 | C. | 17 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,ex-x-1≥0 | B. | ?x∈R,ex-x-1>0 | C. | ?x∈R,ex-x-1>0 | D. | ?x∈R,ex-x-1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有極大值,無(wú)極小值 | B. | 有極小值,無(wú)極大值 | ||
C. | 既有極大值又有極小值 | D. | 既無(wú)極大值也無(wú)極小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com