已知函數(shù)f(x)=
a•2x+a-2
2x+1
是奇函數(shù).
(1)求a值和函數(shù)f(x)的反函數(shù)f-1(x);
(2)若當(dāng)x∈(-1,1)時(shí),不等式f-1(x)≥log2
1+x
m
恒成立,求m取值范圍.
分析:(1)根據(jù)f(x)是奇函數(shù),則f(0)=0,可求出a的值,從而求出f(x)的解析式,根據(jù)指數(shù)的有界性求出函數(shù)的值域,將x用y表示,最后交換x、y,即可求出反函數(shù)的解析式,根據(jù)反函數(shù)的定義域即為原函數(shù)的值域可得所求;
(2)由(1)得log2
1+x
1-x
≥log2
1+x
m
對(duì)x∈(-1,1)恒成立根據(jù)函數(shù)在(0,+∞)上的單調(diào)性建立不等式,將m分離出來(lái),即m≥1-x對(duì)x∈(-1,1)恒成立,從而求出所求.
解答:解:(1)∵f(x)是奇函數(shù),∴f(0)=0⇒
a•1+a-2
1+1
=0
,∴a=1…(2分)
y=f(x)=
2x-1
2x+1
.整理得2x=
1+y
1-y
>0
1+y
1-y
>0⇒-1<y<1

上式兩邊取2為底的對(duì)數(shù),x=log2
1+y
1-y
,交換x、y,y=log2
1+x
1-x

故所求反函數(shù)f-1(x)=log2
1+x
1-x
(-1<x<1)
…(8分)
(2)由(1)得log2
1+x
1-x
≥log2
1+x
m
對(duì)x∈(-1,1)恒成立
∵y=log2x是(0,+∞)上是增函數(shù),
1+x
1-x
1+x
m
…(11分)
即m≥1-x對(duì)x∈(-1,1)恒成立
故m的取值范圍是m≥2…(13分)
點(diǎn)評(píng):本題主要考查了反函數(shù),以及反函數(shù)與原函數(shù)的之間的關(guān)系,同時(shí)考查了恒成立問(wèn)題和最值問(wèn)題,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫(huà)出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案