分析 (I)由A∪B=A得B⊆A,討論B=∅或B≠∅時(shí),求出對(duì)應(yīng)m的取值范圍;
(II)當(dāng)A∩B≠∅時(shí),求出滿足條件的實(shí)數(shù)m的取值范圍.
解答 解:(I)由A∪B=A得B⊆A,…(1分)
當(dāng)B=∅時(shí),則有m+1>2m+3,
解得m<-2; …(3分)
當(dāng)B≠∅時(shí),則有$\left\{\begin{array}{l}m+1≤2m+3\\ m+1>-1\\ 2m+3<2\end{array}\right.$,
解得$-2<m<-\frac{1}{2}$; …(5分)
所以實(shí)數(shù)m的取值范圍為$(-∞,-2)∪(-2,-\frac{1}{2})$…(6分)
(II)若A∩B≠∅,則有
-1<m+1<2或-1<2m+3<2,…(9分)
解得-2<m<1…(11分)
所以實(shí)數(shù)m的取值范圍為(-2,1)…(12分)
點(diǎn)評(píng) 本題考查了集合的定義與運(yùn)算問(wèn)題,也考查了分類(lèi)討論思想的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ②③ | B. | ①②④ | C. | ①③ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{2π}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2,4,6} | B. | {4,6} | C. | {3,4,6} | D. | {2,3,4,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | B. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$ | ||
C. | $g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | D. | $g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com