若函數(shù)f(x)=logmx的反函數(shù)的圖象過點(-1,n),則3n+m的最小值是


  1. A.
    數(shù)學公式
  2. B.
    2
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:若反函數(shù)的圖象過點(a,b),則原函數(shù)的圖象過點(b,a),把點(b,a)代入原函數(shù)的解析式,
得到m、n的關(guān)系,然后使用基本不等式求3n+m的最小值.
解答:由函數(shù)f(x)=logmx的反函數(shù)的圖象過點(-1,n)得,
原函數(shù)的圖象過點(n,-1),即logmn=-1,∴m>0,n>0,mn=1,
由均值不等式得3n+m,當且僅當3n=m時取等號,
故選 C.
點評:本題考查互為反函數(shù)的2個函數(shù)圖象間的關(guān)系,互為反函數(shù)的2個函數(shù)圖象必關(guān)于直線y=x對稱.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:陜西省漢中地區(qū)2007-2008學年度高三數(shù)學第一學期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域為M,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開區(qū)間N,設(shè)全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:汨羅市第三中學2008屆高三第二次月考2、數(shù)學 題型:044

函數(shù)f(x)=lo(x2-2ax+3).

(1)若f(x)的定義域為R,值域為(-∞,-1],試求實數(shù)a的值;

(2)若f(x)在(-∞,1]內(nèi)是增函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:蘇教版江蘇省揚州市2007-2008學年度五校聯(lián)考高三數(shù)學試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)+lnx,當m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省莒南一中2008-2009學年度高三第一學期學業(yè)水平階段性測評數(shù)學文 題型:044

設(shè)f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案