【題目】已知集合,其中,由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:
, .
其中是有序數(shù)對(duì),集合和中的元素個(gè)數(shù)分別為和.
若對(duì)于任意的,總有,則稱(chēng)集合具有性質(zhì).
(Ⅰ)檢驗(yàn)集合與是否具有性質(zhì)并對(duì)其中具有性質(zhì)的集合,寫(xiě)出相應(yīng)的集合和.
(Ⅱ)對(duì)任何具有性質(zhì)的集合,證明.
(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.
【答案】(Ⅰ)集合不具有性質(zhì),集合具有性質(zhì),相應(yīng)集合, ,集合, (Ⅱ)見(jiàn)解析(Ⅲ)
【解析】解:集合不具有性質(zhì).
集合具有性質(zhì),其相應(yīng)的集合和是,
.
(II)證明:首先,由中元素構(gòu)成的有序數(shù)對(duì)共有個(gè).
因?yàn)?/span>,所以;
又因?yàn)楫?dāng)時(shí), 時(shí), ,所以當(dāng)時(shí), .
從而,集合中元素的個(gè)數(shù)最多為,
即.
(III)解: ,證明如下:
(1)對(duì)于,根據(jù)定義, , ,且,從而.
如果與是的不同元素,那么與中至少有一個(gè)不成立,從而與中也至少有一個(gè)不成立.
故與也是的不同元素.
可見(jiàn), 中元素的個(gè)數(shù)不多于中元素的個(gè)數(shù),即,
(2)對(duì)于,根據(jù)定義, , ,且,從而.如果與是的不同元素,那么與中至少有一個(gè)不成立,從而與中也不至少有一個(gè)不成立,
故與也是的不同元素.
可見(jiàn), 中元素的個(gè)數(shù)不多于中元素的個(gè)數(shù),即,
由(1)(2)可知, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦“中國(guó)詩(shī)詞大賽”活動(dòng),某班派出甲乙兩名選手同時(shí)參加比賽. 大賽設(shè)有15個(gè)詩(shī)詞填空題,其中“唐詩(shī)”、“宋詞”和“毛澤東詩(shī)詞”各5個(gè).每位選手從三類(lèi)詩(shī)詞中各任選1個(gè)進(jìn)行作答,3個(gè)全答對(duì)選手得3分,答對(duì)2個(gè)選手得2分,答對(duì)1個(gè)選手得1分,一個(gè)都沒(méi)答對(duì)選手得0分. 已知“唐詩(shī)”、“宋詞”和“毛澤東詩(shī)詞”中甲能答對(duì)的題目個(gè)數(shù)依次為5,4,3,乙能答對(duì)的題目個(gè)數(shù)依此為4,5,4,假設(shè)每人各題答對(duì)與否互不影響,甲乙兩人答對(duì)與否也互不影響.
求:(1)甲乙兩人同時(shí)得到3分的概率;
(2)甲乙兩人得分之和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求證:當(dāng)時(shí), ;
(Ⅱ)若函數(shù)在(1,+∞)上有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求的值.
(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值,及相應(yīng)的的值.
(Ⅲ)求函數(shù)在區(qū)間的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)若函數(shù)存在相同的零點(diǎn),求的值;
(Ⅱ)若存在兩個(gè)正整數(shù),當(dāng)時(shí),有與同時(shí)成立,求的最大值及取最大值時(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面, 為棱中點(diǎn). , , .
(I)求證: 平面.
(II)求證: 平面.
(III)在棱的上是否存在點(diǎn),使得平面平面?如果存在,求此時(shí)的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有窮數(shù)列, , , , ,若數(shù)列中各項(xiàng)都是集合的元素,則稱(chēng)該數(shù)列為數(shù)列.
對(duì)于數(shù)列,定義如下操作過(guò)程從中任取兩項(xiàng), ,將的值添在的最后,然后刪除, ,這樣得到一個(gè)項(xiàng)的新數(shù)列,記作(約定:一個(gè)數(shù)也視作數(shù)列).若還是數(shù)列,可繼續(xù)實(shí)施操作過(guò)程.得到的新數(shù)列記作, ,如此經(jīng)過(guò)次操作后得到的新數(shù)列記作.
(Ⅰ)設(shè), , , ,請(qǐng)寫(xiě)出的所有可能的結(jié)果.
(Ⅱ)求證:對(duì)數(shù)列實(shí)施操作過(guò)程后得到的數(shù)列仍是數(shù)列.
(Ⅲ)設(shè), , , , , , , , , , ,求的所有可能的結(jié)果,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com