20.已知集合A={x|ln(x-1)≤0},B={x|-1≤x≤3},則A∩B等于(  )
A.[-1,3]B.[-1,2]C.(1,2]D.[1,2)

分析 化簡(jiǎn)集合A,根據(jù)交集的定義寫出A∩B即可.

解答 解:集合A={x|ln(x-1)≤0}={x|0<x-1≤1}={x|1<x≤2},
B={x|-1≤x≤3},
則A∩B={x|1<x≤2}=(1,2].
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若指數(shù)函數(shù)f(x)=(3m-1)x在R上是減函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.m>0且m≠1B.m≠$\frac{1}{3}$C.m>$\frac{1}{3}$且m≠$\frac{2}{3}$D.$\frac{1}{3}$<m<$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)為偶函數(shù),且f(1+x)=f(1-x),當(dāng)x∈[0,1]時(shí),f(x)=x2,$g(x)={x^{-\frac{2}{3}}}-\frac{1}{2}$,則函數(shù)F(x)=f(x)-g(x)的零點(diǎn)的個(gè)數(shù)為(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)y=f(x)滿足f(-2)=f(4)=-16,且函數(shù)f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a^x},x≥1}\end{array}}\right.$是R上的減函數(shù),那么a的取值范圍是$[\frac{1}{6},\frac{1}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某校老年,中年和青年教師的人數(shù)見(jiàn)下表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中
青年教師有320人,則該樣本的老年教師人數(shù)為( 。
類別人數(shù)
老年教師900
中年教師1800
青年教師1600
A.90B.100C.180D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.我國(guó)古代數(shù)學(xué)名著《張邱建算經(jīng)》有“分錢問(wèn)題”:今有與人錢,初一人與三錢,次一人與四錢,次一人與五錢,以次與之,轉(zhuǎn)多一錢,與訖,還斂聚與均分之,人得一百錢,問(wèn)人幾何?意思是:將錢分給若干人,第一人給3錢,第二人給4錢,第三人給5錢,以此類推,每人比前一人多給1錢,分完后,再把錢收回平均分給各人,結(jié)果每人分得100錢,問(wèn)有多少人?則題中的人數(shù)是195.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知P(x,y)為平面區(qū)域$\left\{\begin{array}{l}x-y≥0\\ x+y≥0\\ a≤x≤a+1(a>0)\end{array}\right.$內(nèi)的任意一點(diǎn),當(dāng)該區(qū)域的面積為3時(shí),z=2x-y的最大值是(  )
A.6B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)y=$\frac{\sqrt{x+1}}{x}$的定義域是( 。
A.[-1,+∞)B.[-1,0)C.(-1,+∞)D.[-1,0)∪(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案