【題目】如圖所示的折線圖為某小區(qū)小型超市今年1月份到5月份的營業(yè)額和支出數(shù)據(利潤=營業(yè)額-支出),根據折線圖,下列說法正確的是(

A.該超市這五個月中的營業(yè)額一直在增長;

B.該超市這五個月的利潤一直在增長;

C.該超市這五個月中五月份的利潤最高;

D.該超市這五個月中的營業(yè)額和支出呈正相關.

【答案】ACD

【解析】

利用頻率分布折線圖中的數(shù)據可計算每月利潤進行分析可得答案.

解:由一月份到五月份的營業(yè)額和支出數(shù)據(利潤營業(yè)額支出),可得:

一月利潤:;二月利潤:;三月利潤:;

四月利潤:;五月利潤:;所以由數(shù)據可知:

、該超市這五個月中,營業(yè)額在增長;正確.

、該超市這五個月中,四月份利潤降低;錯誤.

、該超市這五個月中,五月份利潤最高;正確.

、該超市這五個月中的營業(yè)額和支出呈正相關;正確.

故選:ACD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市移動公司為了提高服務質量,決定對使用A,B兩種套餐的集團用戶進行調查,準備從本市個人數(shù)超過1000人的大集團和8個人數(shù)低于200人的小集團中隨機抽取若干個集團進行調查,若一次抽取2個集團,全是小集團的概率為

求n的值;

若取出的2個集團是同一類集團,求全為大集團的概率;

若一次抽取4個集團,假設取出小集團的個數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,橢圓的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求經過橢圓右焦點且與直線垂直的直線的極坐標方程;

(2)若為橢圓上任意-點,當點到直線距離最小時,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾,調查結果如下面的2×2列聯(lián)表.

非體育迷

體育迷

總計

30

15

45

45

10

55

總計

75

25

100

1)據此資料判斷是否有90%的把握認為體育迷與性別有關.

2)將日均收看該體育項目不低于50分鐘的觀眾稱為超級體育迷,已知超級體育迷共有5人,其中女性2名,男性3名,若從超級體育迷中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓周上有個白點,先將其中一個染為黑色(稱為第一次染色),對任何正整數(shù),次染色后按逆時針方向間隔個點將下個點染成與原來顏色相反的顏色(稱為第次染色).

(1)對給定正整數(shù),是否存在正整數(shù),使次染色后個點均為白色?

(2)對給定正整數(shù),是否存在正整數(shù),使次染色后個點均為黑色?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷的單調性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20203月,各行各業(yè)開始復工復產,生活逐步恢復常態(tài),某物流公司承擔從甲地到乙地的蔬菜運輸業(yè)務.已知該公司統(tǒng)計了往年同期200天內每天配送的蔬菜量X40X200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計得到表格如表:

蔬菜量X

[40,80

[80,120

[120,160

[160,200

天數(shù)

25

50

100

25

若將頻率視為概率,試解答如下問題:

1)該物流公司負責人決定隨機抽出3天的數(shù)據來分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;

2)該物流公司擬一次性租賃一批貨車專門運營從甲地到乙地的蔬菜運輸.已知一輛貨車每天只能運營一趟,每輛貨車每趟最多可裝載40件,滿載才發(fā)車,否則不發(fā)車.若發(fā)車,則每輛貨車每趟可獲利2000元;若未發(fā)車,則每輛貨車每天平均虧損400元.為使該物流公司此項業(yè)務的營業(yè)利潤最大,該物流公司應一次性租賃幾輛貨車?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】名學生中,已知任意三人中有兩人互相認識,任意四人中有兩人互相不認識,則的最大值為______.

查看答案和解析>>

同步練習冊答案