定義域和值域均為[-a,a](常數(shù)a>0)的函數(shù)y=f(x)和y=g(x)的圖象如圖所示,給出下列四個命題:

    

①方程f[g(x)]=0有且僅有三個解;

②方程g[f(x)]=0有且僅有三個解;

③方程f[f(x)]=0有且僅有九個解;

④方程g[g(x)]=0有且僅有一個解.

那么,其中的正確命題是(    )

A.①③             B.②③              C.③④             D.①④

解析:由圖知f(x)的圖象與x軸有3個交點,g(x)的圖象與x軸有且僅有一個交點,設(shè)f(x)=0的三個根分別為x1、x2、x3。則x1、x2、x3∈[-a,a],再設(shè)g(x)=0的一個根為x4,x4∈[-a,a].

    則由f(g(x))=0g(x)=x1或g(x)=x2或g(x)=x3,再由g(x)的單調(diào)性知f[g(x)]=0有且僅有三個解,因此①是正確的,同理可判斷②,③皆錯,④對,因此答案應(yīng)為D.

答案:D


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
34
x2-3x+4的定義域和值域均為[a,b],則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、定義域和值域均為[-a,a](常數(shù)a>0)的函數(shù)y=f(x)和y=g(x)的圖象如圖所示,給出下列四個命題:
①方程f[g(x)]有且僅有三個解;
②方程g[f(x)]有且僅有三個解;
③方程f[f(x)]有且僅有九個解;
④方程g[g(x)]有且僅有一個解.
那么,其中正確命題的個數(shù)是
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域和值域均為[0,1]的函數(shù)f(x),定義f1(x)=f(x),f2(x)=f(f1(x)),…,n=1,2,3,….滿足fn(x)=x的點稱為f的n階周期點.設(shè)f(x)=
2x,0≤x≤
1
2
2-2x,
1
2
<x≤1
 則f的2階周期點的個數(shù)是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-2x+2的定義域和值域均為區(qū)間[a,b],其中a,b∈Z,則a+b=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log2
x2+ax+1
x
的定義域和值域均為[1,+∞),則實數(shù)a的取值集合為( 。
A、{0}
B、{a|0≤a≤1}
C、{a|a≥0}
D、{a|a≥2}

查看答案和解析>>

同步練習(xí)冊答案