【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓且斜率為的直線交圓兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),

(1)求橢圓的方程.

(2)當(dāng)時(shí),求的面積.

【答案】(1)(2)

【解析】

(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.

(1)因?yàn)橹本過點(diǎn),且斜率.

所以直線的方程為,即,

所以圓心到直線的距離為,

又因?yàn)?/span>,圓的半徑為,

所以,即,

解之得,(舍去).

所以,

所以所示橢圓的方程為 .

(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率

則點(diǎn)到右準(zhǔn)線的距離為,

所以,即,把代入橢圓方程得,,

因?yàn)橹本的斜率

所以,

因?yàn)橹本經(jīng)過,

所以直線的方程為,

聯(lián)立方程組,

解得,

所以

所以的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.

1)求函數(shù),的解析式;

2)設(shè)函數(shù),記,.探究是否存在正整數(shù),使得對任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

參考結(jié)論:設(shè)均為常數(shù),函數(shù)的圖象關(guān)于點(diǎn)對稱的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個(gè)矩形的活動(dòng)場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若,設(shè)

(Ⅰ)記活動(dòng)場地與停車場占地總面積為,求的表達(dá)式;

(Ⅱ)當(dāng)為何值時(shí),可使活動(dòng)場地與停車場占地總面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過站的地鐵票價(jià)如下表:

乘坐站數(shù)

票價(jià)(元)

現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站,且他們各自在每個(gè)站下車的可能性是相同的.

(1)若甲、乙兩人共付費(fèi)元,則甲、乙下車方案共有多少種?

(2)若甲、乙兩人共付費(fèi)元,求甲比乙先到達(dá)目的地的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)下列說法中正確的是(

A.在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

B.A、B為互斥事件,則A的對立事件與B的對立事件一定互斥.

C.某個(gè)班級內(nèi)有40名學(xué)生,抽10名同學(xué)去參加某項(xiàng)活動(dòng),則每4人中必有1人抽中.

D.若回歸直線的斜率,則變量正相關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是恰當(dāng)回歸方程

1)從這組數(shù)據(jù)中隨機(jī)選取2組數(shù)據(jù),求選取的這組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;

2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是恰當(dāng)回歸方程;

附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班共有學(xué)生40人,將一次數(shù)學(xué)考試成績(單位:分)繪制成頻率分布直方圖,如圖所示。

(1)請根據(jù)圖中所給數(shù)據(jù),求出的值;

(2)從成績在[50,70)內(nèi)的學(xué)生中隨機(jī)選3名學(xué)生,求這3名學(xué)生的成績都在[60,70)內(nèi)的概率;

(3)為了了解學(xué)生本次考試的失分情況,從成績在[5070)內(nèi)的學(xué)生中隨機(jī)選取3人的成績進(jìn)行分析,用X表示所選學(xué)生成績在[ 60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)解不等式;

(2)設(shè)函數(shù)的最小值為c,實(shí)數(shù)a,b滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(xk)ex.

(1)求f(x)的單調(diào)區(qū)間;

(2)求f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案