設(shè)復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為
 
分析:直接利用復(fù)數(shù)的求模公式以及三角函數(shù)的基本關(guān)系式化簡(jiǎn)表達(dá)式,通過(guò)三角函數(shù)的最值,求出最大值.
解答:解:復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=
(1+cosθ)2+sin2θ
=
2+2cosθ
≤2.
故答案為:2.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)求模運(yùn)算,注意三角函數(shù)的角的范圍,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=cosθ+icosθ,θ∈[0,π],ω=-1+i,則|z-ω|的最大值是( 。
A、
2
+1
B、
5
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=cosθ+isinθ,θ∈(π,2π),求復(fù)數(shù)z2+z的模和輻角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=cosθ+isinθ,θ∈[0,π],ω=-1+i,則|z-ω|的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=cosθ+isinθ,θ∈[0,π],ω=-1+i,求|z-ω|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案