下列幾個命題:
①方程的有一個正實根,一個負實根,則;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③函數(shù)的值域是,則函數(shù)的值域為;
④設(shè)函數(shù)定義域為R,則函數(shù)的圖象關(guān)于軸對稱;
⑤一條曲線和直線的公共點個數(shù)是,則的值不可能是1.
其中正確的有________________.

①⑤

解析試題分析:①令,,要使方程有一個正實根,一個負實根,需滿足,即。所以此命題正確;
②函數(shù)的定義域為{-1,1, },所以,所以即是偶函數(shù),又是奇函數(shù);所以此命題不正確;
③若函數(shù)的值域是,則函數(shù)的值域為
④設(shè)函數(shù)定義域為R,則函數(shù)的圖象關(guān)于軸對稱,錯誤;因為f(x)與y=f(-x)的圖象關(guān)于直線x=0對稱,
又函數(shù)y=f(x-1)與y=f(1-x)的圖象可以由f(x)與y=f(-x)的圖象向右移了個單位而得到,所以函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對稱;
⑤一條曲線和直線的公共點個數(shù)是,則的值可能是0,2,3,但不可能是1.
考點:一元二次方程根的分布問題;函數(shù)的奇偶性;函數(shù)的值域;函數(shù)的圖像變換。
點評:此題考查的知識點較多,較為綜合,屬于中檔題。函數(shù),方程有一正根。一負根的條件是。其中正確理解函數(shù)圖象的平移,對稱軸也跟著平移的原則,是解答④的關(guān)鍵。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0的有一個正實根,一個負實根,則a<0;
 ②若f(x)的定義域為[0,1],則f(x+2)的定義域為[-2,-1];
③函數(shù)y=log2(-x+1)+2的圖象可由y=log2(-x-1)-2的圖象向上平移4個單位,向左平移2個單位得到;
④若關(guān)于x方程|x2-2x-3|=m有兩解,則m=0或m>4.
⑤若函數(shù)f(2x+1)是偶函數(shù),則f(2x)的圖象關(guān)于直線x=
12
對稱.
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題
①若方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0.
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù).
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為[-3,1].
④函數(shù)y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
⑤一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)y=f(x)定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對稱;
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0的有一個正解,一個負實根,則a<0;
②若f(x)的定義域為[0,1],則f(x+2)的定義域為[-2,1];
③函數(shù)y=log2(x+1)+2的圖象可由y=log2(x-1)-2的圖象向上平移4個單位,向右平移2個單位得到;
④若關(guān)于x的方程式|x2-2x-3|=m有兩解,則m=0或m>4,其中正確的有
①④
①④
(填序號)

查看答案和解析>>

同步練習(xí)冊答案