已知點P(x0,y0)和點A(2,3)在直線l:x+4y-6=0的異側(cè),則( 。
分析:根據(jù)點P(x0,y0)和點A(2,3)在直線l:x+4y-6=0的異側(cè)結(jié)合二元一次不等式(組)與平面區(qū)域可知,將兩點的坐標(biāo)代入直線方程式的左式,得到的值符號相反.
解答:解:由點P和點A代入直線左側(cè)式子乘積小于0,得:
(x0+4y0-6)(2+4×3-6)<0,
即:x0+4y0<6.
故選C.
點評:本小題主要考查二元一次不等式(組)與平面區(qū)域、不等式的解法等基礎(chǔ)知識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0).
(1)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),求證:xE•xF是與MN和點P位置無關(guān)的定值;
(3)請選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過某種四則運算(加、減、乘、除),其結(jié)果是否是與MN和點P位置無關(guān)的定值,寫出你的研究結(jié)論并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知點P(x0,y0)和點A(1,2)在直線l:3x+2y-8=0的異側(cè),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(
x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點E(xE,0)和點F(xF,0).
(Ⅰ)試用x0,y0,m,n的代數(shù)式分別表示xE和xF
(Ⅱ)已知“若點P(x0,y0)是圓C:x2+y2=R2上的任意一點(
x0•y0≠0),MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),則xExF=R2”.類比這一結(jié)論,我們猜想:“若曲線C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),則xE•xF也是與點M、N、P位置無關(guān)的定值”,請你對該猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x0,y0)是漸近線為2x±3y=0且經(jīng)過定點(6,2
3
)的雙曲線C1上的一動點,點Q是P關(guān)于雙曲線C1實軸A1A2的對稱點,設(shè)直線PA1與QA2的交點為M(x,y),
(1)求雙曲線C1的方程;
(2)求動點M的軌跡C2的方程;
(3)已知x軸上一定點N(1,0),過N點斜率不為0的直線L交C2于A、B兩點,x軸上是否存在定點 K(x0,0)使得∠AKN=∠BKN?若存在,求出點K的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案