已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,直線x+y+1=0與橢圓交于P、Q兩點,且OP⊥OQ,求該橢圓方程.
設P(x1,y1),Q(x2,y2),
e=
3
2
,∴
c
a
=
3
2
,∴a2=
4
3
c2=b2+c2
,∴a2=4b2
設橢圓方程
x2
4b2
+
y2
b2
=1
,
聯(lián)立
x+y+1=0
x2
4b2
+
y2
b2
=1
消y得5x2+8x+4-4b2=0,
∵直線x+y+1=0與橢圓交于P、Q兩點,∴△=64-4×5×(4-4b2)>0,化為5b3>1.
x1+x2=-
8
5
x1x2=
4-4b2
5
(*)
∵OP⊥OQ,∴
OP
OQ
=0

∴x1x2+y1y2=0,∴x1x2+(x1+1)(x2+1)=0.
∴2x1x2+x1+x2+1=0,
把(*)代入可得2
4-4b2
5
+(-
8
5
)+1=0,
解得b2=
5
8
,∴b=
10
4
.滿足△>0.∴b2=
5
8

a2=
5
2

∴橢圓方程為
x2
5
2
+
y2
5
8
=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:x2+3y2=3b2(b>0).
(1)求橢圓C的離心率;
(2)若b=1,A,B是橢圓C上兩點,且|AB|=
3
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓
x2
16
+
y2
9
=1
內,有一內接三角形ABC,它的一邊BC與長軸重合,點A在橢圓上運動,則△ABC的重心的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線x2-y2=1上一點Q作直線x+y=2的垂線,垂足為N,則線段QN的中點P的軌跡方程為( 。
A.2x2-2y2-2x-1=0B.x2+y2=1
C.2x2+2y2-y=0D.2x2-2y2-2x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線x-y+1=0經(jīng)過橢圓S:
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點和一個頂點.
(1)求橢圓S的方程;
(2)如圖,M,N分別是橢圓S的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC,并延長交橢圓于點B,設直線PA的斜率為k.
①若直線PA平分線段MN,求k的值;
②對任意k>0,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)其右準線交x軸于點A,雙曲線虛軸的下端點為B,過雙曲線的右焦點F(c,0)作垂直于x軸的直線交雙曲線于點P,若點D滿足:2
OD
=
OF
+
OP
(O為原點)且
AB
AD
(λ≠0)

(1)求雙曲線的離心率;
(2)若a=2,過點B的直線l交雙曲線于M、N兩點,問在y軸上是否存在定點C,使?
CM
CN
為常數(shù),若存在,求出C點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8相交于A、B兩點,且
OA
OB
=0
(O為坐標原點),直線l與圓O相切,切點在劣弧AB(含A、B兩點)上,且與拋物線C相交于M、N兩點,d是M、N兩點到拋物線C的焦點的距離之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線x2=4
3
y
的準線過雙曲線
x2
m2
-y2=-1
的一個焦點,則雙曲線的離心率為( 。
A.
3
2
4
B.
6
2
C.
3
D.
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[理]如圖,已知動點A,B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線上運動,若ABx軸,點N的坐標為(1,0),則△ABN的周長l的取值范圍是______.
[文]點P是曲線y=x2-lnx上任意一點,則P到直線y=x-2的距離的最小值是______.

查看答案和解析>>

同步練習冊答案