A. | (x-2)2+(y+1)2=2 | B. | (x+2)2+(y-1)2=4 | C. | (x-2)2+(y+1)2=8 | D. | (x+2)2+(y-1)2=8 |
分析 直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,所以利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,即為所求圓的半徑r,然后由圓心和求出的r寫(xiě)出圓的標(biāo)準(zhǔn)方程即可.
解答 解:由所求的圓與直線x+y-3=0相切,
得到圓心(-2,1)到直線x+y-3=0的距離d=$\frac{|-2+1-3|}{\sqrt{2}}$=2$\sqrt{2}$,
則所求圓的方程為:(x+2)2+(y-1)2=8.
故選:D
點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,以及圓的標(biāo)準(zhǔn)方程,直線與圓位置關(guān)系判別方法為:當(dāng)d>r時(shí),直線與圓相離;當(dāng)d=r時(shí),直線與圓相切;當(dāng)0<d<r時(shí),直線與圓相交(d為圓心到直線的距離,r為圓的半徑),同時(shí)要求學(xué)生會(huì)根據(jù)圓心和半徑寫(xiě)出圓的標(biāo)準(zhǔn)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
A班 | B班 | 合計(jì) | |
種子選手 | |||
非種子選手 | |||
合計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,-$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{3}$,0) | C. | (0,$\frac{\sqrt{3}}{3}$) | D. | ($\frac{\sqrt{3}}{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | $\frac{33}{10}$ | C. | $\frac{23}{6}$ | D. | $\frac{41}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com