設(shè)復(fù)數(shù)z滿足z•(i-1)=2i(其中i為虛數(shù)單位),則z等于(  )
A、1-iB、1+i
C、-1+iD、-1-i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則即可得出.
解答: 解:∵z•(i-1)=2i,
∴z(i-1)(-i-1)=2i(-i-1),
∴2z=-2(-1+i),
∴z=1-i.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2+
2
sinx的最小正周期和最小值分別為(  )
A、π,1
B、2π,1
C、π,2-
2
D、2π,2-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠分別生產(chǎn)甲、乙兩種產(chǎn)品1箱時(shí)所需要的煤、電以及獲得的純利潤如下表所示.
煤(噸) 電(千度) 純利潤(萬元)
1箱甲產(chǎn)品 3 1 2
1箱乙產(chǎn)品 1 1 1
若生產(chǎn)甲、乙兩種產(chǎn)品可使用的煤不超過120噸,電不超過60千度,則可獲得的最大純利潤和是(  )
A、60萬元B、80萬元
C、90萬元D、100萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S14=7a10,a7=2,則a9=(  )
A、-4B、4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A三角形ABC的內(nèi)角,則“sinA=
2
2
”是“cosA=
2
2
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)y=f(x),x∈R“y=f(x)為奇函數(shù)”是“函數(shù)y=|f(x)|的圖象關(guān)于y軸對(duì)稱”是的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與單位圓交于點(diǎn)P(m,n),且n=2m(m≠0)那么sin2α的值是( 。
A、-
4
5
B、
4
5
C、-
3
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(2ωx+
π
6
)+
a
6
+b
,(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是
7
4
,最小值是 
3
4

(1)求ω,a,b的值;
(2)求出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,BA=BD,AD⊥CD,E、F分別為AC、AD的中點(diǎn).
(Ⅰ)求證:EF∥平面BCD;
(Ⅱ)求證:平面EFB⊥平面ABD;
(Ⅲ)若BC=BD=CD=AD=2,AC=2
2
,求二面角B-AD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案