17.設(shè)數(shù)列{an}(n∈N*)的前n項和為sn,滿足sn=2an-2
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和Tn,求Tn

分析 (1)推導(dǎo)出Sn=2an-2,從而n≥2時,Sn-1=2an-1-2,進而an=2an-1(n≥2),由此得到數(shù)列{an}是首項為2,公比為2的等比數(shù)列,從而能求出數(shù)列{an}的通項公式.
(2)由$\frac{1}{a_n}=\frac{1}{2^n}$,利用等比數(shù)列前n項和公式能求出結(jié)果.

解答 解:(1)∵數(shù)列{an}(n∈N*)的前n項和為Sn,滿足Sn=2an-2,
由題意Sn=2an-2有n≥2,Sn-1=2an-1-2,
兩式相減得,an=2an-1(n≥2),
又a1=2,故數(shù)列{an}是首項為2,公比為2的等比數(shù)列,
故${a_n}={2^n}$.(6分)
(2)由(1)得$\frac{1}{a_n}=\frac{1}{2^n}$,
∴${T_n}=\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{2^n}$
=$\frac{{\frac{1}{2}[{1-{{({\frac{1}{2}})}^n}}]}}{{1-\frac{1}{2}}}=1-\frac{1}{2^n}$.(12分)

點評 本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和公式的求法,是中檔題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)ξ~B(n,p),若有E(ξ)=12.D(ξ)=4,則p的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點,PO⊥平面ABCD,PO=1,M為PD的中點.
(1)證明:PB∥平面ACM;
(2)設(shè)直線AM與平面ABCD所成的角為α,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*).設(shè)bn=$\frac{1}{{a}_{n}-1}$(n∈N*),求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知二次函數(shù)f(x)=ax2+bx+c圖象的對稱軸方程為x=2,且經(jīng)過點(1,4)和點(5,0),則f(x)的解析式為f(x)=-$\frac{1}{2}$x2+2x+$\frac{5}{2}$,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等比數(shù)列{an}的公比q>1,a1與a4的等比中項是4$\sqrt{2}$,a2和a3的等差中項為6,數(shù)列{bn}滿足bn=log2an
(1)求{an}的通項公式;
(2)求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=log2(2x+1)-$\frac{1}{2}$x.
(Ⅰ)求證:函數(shù)f(x)是偶函數(shù).
(Ⅱ)求證:對x∈R,f(x)≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知有相同的兩個焦點F1,F(xiàn)2的橢圓$\frac{x^2}{m}+{y^2}$=1(m>1)和雙曲線$\frac{x^2}{n}-3{y^2}$=1(n>0),P是它們的一個交點,則∠F1PF2=( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α,β為平面,a,b,c為直線,下列說法正確的是(  )
A.若b∥a,a?α,則b∥αB.若α⊥β,α∩β=c,b⊥c,則b⊥β
C.若a⊥c,b⊥c,則a∥bD.若a∩b=A,a?α,b?α,a∥β,b∥β,則α∥β

查看答案和解析>>

同步練習(xí)冊答案