15.為了判斷高中學(xué)生的文理科選修是否與性別有關(guān)系,隨機(jī)調(diào)查了50名學(xué)生,得到如下2×2的列聯(lián)表:
理科文科
1310
720
附:
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
根據(jù)表中數(shù)據(jù),得到${x^2}=\frac{{50×{{({13×20-10×7})}^2}}}{23×27×20×30}≈4.844$,則認(rèn)為選修文理科與性別有關(guān)系的可能性不低于95%.

分析 根據(jù)表中數(shù)據(jù)的觀測(cè)值,對(duì)照臨界值即可得出結(jié)論.

解答 解:根據(jù)表中數(shù)據(jù),得到${x^2}=\frac{{50×{{({13×20-10×7})}^2}}}{23×27×20×30}≈4.844$>3.841,
對(duì)照臨界值得,認(rèn)為選修文理科與性別有關(guān)系的可能性不低于95%.
故答案為:95%.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U=R,集合A={x|x(x-2)<0},B={x||x|≤1},則下列陰影部分表示的集合是(  )
A.(0,1]B.(-2,-1)∪[0,1]C.[-1,0]∪(1,2)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,若a+c=20,C=2A,cosA=$\frac{3}{4}$,則$\frac{c}{a}$=$\frac{3}{2}$,b=10或8..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)={(\frac{1}{2})^x}$與g(x)=-|x|在區(qū)間(-∞,0)上的單調(diào)性為( 。
A.都是增函數(shù)B.f(x)為減函數(shù),g(x)為增函數(shù)
C.都是減函數(shù)D.f(x)為增函數(shù),g(x)為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.以下四個(gè)命題:
①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為$\frac{1+a}{2}$;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2a-b>1”的充分不必要條件;
③函數(shù)f(x)=${x}^{\frac{1}{2}}$-($\frac{1}{2}$)x的零點(diǎn)個(gè)數(shù)為1;
④命題p:?n∈N,3n≥n2+1,則¬p為?n∈N,3n≤n2+1.
其中真命題的序號(hào)為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察下面一組等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根據(jù)上面等式猜測(cè)S2n-1=(4n-3)(an+b),則a2+b2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足x2f'(x)+xf(x)=lnx,f(e)=$\frac{1}{e}$,則f(x)( 。
A.有極大值,無極小值B.有極小值,無極大值
C.既有極大值又有極小值D.既無極大值也無極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓E:(x+$\sqrt{3}$)2+y2=16,點(diǎn)F($\sqrt{3}$,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(Ⅱ)直線l過點(diǎn)(1,1),且與軌跡Γ交于A,B兩點(diǎn),點(diǎn)M滿足$\overrightarrow{AM}$=$\overrightarrow{MB}$,點(diǎn)O為坐標(biāo)原點(diǎn),延長(zhǎng)線段OM與軌跡Γ交于點(diǎn)R,四邊形OARB能否為平行四邊形?若能,求出此時(shí)直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=$\sqrt{3}$f(x),x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,x∈[0,1)}\\{-2•(\frac{1}{3})^{|x-\frac{4}{3}|},x∈[1,2)}\end{array}\right.$,x
∈[-4,-2)時(shí),f(x)≥t2-$\frac{7}{3}$t恒成立,則實(shí)數(shù)t的取值范圍是( 。
A.[$\frac{1}{2}$,3)B.(-∞,$\frac{1}{2}$]∪(3,+∞)C.[$\frac{1}{3}$,2]D.(-∞,$\frac{1}{3}$]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案